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UNIQUENESS OF CERTAIN SPHERICAL CODES 

EIICHI BANNAI AND N. J. A. SLOANE 

1. Introduction. In this paper we show that there is essentially only 
one way of arranging 240 (resp. 196560) nonoverlapping unit spheres in 
R8 (resp. R24) so that they all touch another unit sphere, and only one 
way of arranging 56 (resp. 4600) spheres in R8 (resp. R24) so that they 
all touch two further, touching spheres. The following tight spherical 
^-designs are unique: the 5-design in fi7, the 7-designs in fi8 and 1223, and 
the 11-design in 1224. It was shown in [20] that the maximum number of 
nonoverlapping unit spheres in R8 (resp. R24) that can touch another 
unit sphere is 240 (resp. 196560). Arrangements of spheres meeting these 
bounds can be obtained from the E8 and Leech lattices, respectively. The 
present paper shows that these are the only arrangements meeting these 
bounds. In [2], [3], it was shown that there are no tight spherical t-
designs for t ^ 8 except for the tight 11-design in fi24- The present paper 
shows that this and three other tight /-designs are also unique. There is 
already a considerable body of literature concerning the uniqueness of 
these lattices and their associated codes and groups ([5], [6], [8], [11], 
[13], [17]-[19], [21], [22], [27], [28]). However the results given here are 
believed to be new. 

Our notation is that fln denotes the unit sphere in Kn and (,) is the usual 
inner product. An (n, M, s) spherical code is a subset C of tin of size M 
such that (u, v) ^ 5 for all u, v £ C, u ^ v. 

Examples of spherical codes may be obtained from sphere packings 
([15], [25]) via the following theorem, whose elementary proof is omitted. 

THEOREM 1. In a packing of unit spheres in Rn let 5i, . . . , Sk be a set 
of spheres such that Sf touches Sj for all i 7^ j . Suppose there are further 
spheres 7\, . . . , TM each of which touches all the St. Then after reseating 
the centers of 7\, . . . , TM form an (n — k + 1, M, l/(k + 1)) spherical 
code. 

Example 2. In the E8 lattice packing in R8 there are 240 spheres 
touching each sphere, 56 that touch each pair of touching spheres, 27 
that touch each triple of mutually touching spheres, and so on. From 
Theorem 1 the centers of these sets of spheres give rise to (8, 240, 1/2), 
(7, 56, 1/3), (6, 27, 1/4), (5, 16, 1/5), (4, 10, 1/6) and (3, 6, 1/7) 
spherical codes. 
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Example 3. Similarly the Leech lattice in R24 ([5],'[14], [16], [26]) gives 
rise to (24, 196560, 1/2), (23, 4600, 1/3), (22, 891, 1/4), (21, 336, 1/5), 
(20, 170, 1/6). . . spherical codes. 

If C is an (n, M, s) spherical code and u Ç C the distance distribution 
of C with respect to u is the set of numbers {At(u), —1 ^ / ^ 1}, where 

At(u) = |{vG C: (u ,v) = t}\, 

and the distance distribution of C is the set of numbers {At, — 1 ^ t ^ 1}, 
where 

At = T j f E ^ l ( u ) . 
M uçc 

Then the A t satisfy 

Al = 1, 

,4* = 0 for 5 < t < 1, 

£ At = M-1, 

and 
E AtPk(t)^ -Pk(l), for* = 1 , 2 , 3 , . . . , 

where P^(^) = P^^-^^ -^ -^ /^x ) is a Jacobi polynomial in the notation 
of [1, Chapter 2]. For a proof of the last inequality see [9], [12], [16] or 
[20]. For a specified value of 5 an upper bound to M is therefore given by 
the following linear programming problem. 

(PI) Choose {A t, —1 ^ t ^ s} so as to maximize 

Z At 
-l^tès 

subject to the inequalities 

At^0, 
(1) £ AtPk(t)^ -Pk(l), for k = 1,2,3, . . . . 

-IS tés 

The dual problem may be stated as follows (compare the argument in 
[18, Chapter 17, §4]). 

(P2) Choose an integer N and a polynomial f(t) of degree N, say 

so as to minimize/(l)//o subject to the inequalities 

(2) / 0 > 0 , / , è 0 for* = l , 2 , . . . , i V , 

(3) f{t) ^ 0 for - 1 g * ^ s. 
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Since any feasible solution to the dual problem is an upper bound to the 
optimal solution of the primal problem, we have 

(4) M g / ( l ) / / 0 

for any polynomial /( /) satisfying (2) and (3). 

2. Uniqueness of the code of size 240 in £28. 

THEOREM 4 ([20]). If C is an (8, M, 1/2) code then M g 240. 

Proof. Consider the polynomial 

/<o-f < ' + D ( ' + I ) ! 4 - I ) 
_ P .16 ,200 ,832 ,1216 5120 
- Po + ? Pi + 63 P2 + 231 Pa + 429 P4 + 3003 P4 

. 2560 
^ 4641 6' 

where Pk stands for Pk
2-b>2-°{t). This satisfies (2) and (3) with 5 = 1/2, 

so from (4) we have M g / ( l ) / / 0 = 240. 

THEOREM 5. / / (a) C w an (8,240,1/2) cede then (b) C w a tight spherical 
7-design in Œ8 {cf. [9], [10]), (c) Ccarries a 4-class association scheme {cf. 
[7], [26]), (d) the intersection numbers of this association scheme are uniquely 
determined, and (e) //ze distance distribution of C with respect to any u £ C 

4 i ( u ) = 4_i(u) = 1, 

(6) A1/2(u) = ^_ i / 2 (u) = 56, 

A0(u) = 126. 

Proof. Let {̂ 4̂ } be the distance distribution of C. Then {̂ 4,} is an 
optimal solution to the primal problem (PI) , and the polynomial/(/) in 
(5) is an optimal solution to the dual problem (P2). The dual variables 

/1, . . . , /6 are nonzero, so by the theorem of complementary slackness 
[23] the primal constraints (1) must hold with equality for k = 1, . . . , 6. 

The dual constraints (3) do not hold with equality except for t = — 1 , 
zbl/2 and 0. Therefore the primal variables must vanish everywhere 
except perhaps for A-\, A±i/2 and A0. From (1) these numbers satisfy 
the equations 

(7) A^Pti-1) + ^ _ 1 / 2 P , ( - è ) + A0Pk{0) + A1/2Pk{±) = -Pk{l), 



440 EIICHI BANNAI AND N. J. A. SLOANE 

for k = 1, 2, 6. T h u s 

(8) 

1 1 1 
7 
2 

7 
" 4 

0 

63 9 9 
8 8 8 

231 
16 

33 
64 

0 

3003 
128 

429 
256 

143 
128 

9009 
256 

1287 
1024 

0 

51051 
1024 

663 
2048 

1105 
1024 

1 

7 
4 
9 
8 

_ 33 
64 

_ É?9 
256 

1287 
1024 
663 
2048 

4 - i 

4-1/2 

4 0 

A1/2 

239 
__ 7 

2 

_ 63 
8 

_ 231 
16 

_ 3003 
128 

9009 
256 

51051 
1024 

The unique solution is 

(9) A-X = 1, 4 _ 1 / 2 = Ai/a = 56, Ao = 126. 

Since 4 _ i ( u ) ^ 1 and A-i = 1, we have 4 _ i ( u ) = 1 for all u £ C, and 
so the code is ant ipodal [9, p . 373]. Therefore (7) also holds for k = 7 
and by [9, Theorem 5.5] C is a spherical 7-design. By [9, Definition 

5.13] the design is t ight, since \C\. = 21 I. By [9, Theorem 7.5] C 

carries a 4-class association scheme. Therefore i , ( u ) = At is indepen­
dent of u for all /. This proves (b) , (c) and (e). The numbers (9) are the 
valencies of the association scheme, and by [9, Theorem 7.4] determine 
all the intersection numbers . This proves (d) . 

T H E O R E M 6. If condition (b) of Theorem 5 holds then so do (a) , (c), (d) 
and (e). 

Proof, By definition \C\ = 21 l. From [9, Theorem 5.12] the inner 

products between the members of C are ± 1 and the zeros of 

Czix) = 160(x + \)x(x - \). 

T h u s all the At are zero except perhaps for A±u ^±1/2 and A0. From 
[9, Theorem 5.5] Eq. (7) holds for k = 1, 2, . . . , 7. T h e rest of the proof 
is the same as for Theorem 5. 

In Example 2 we saw tha t the minimal vectors in the E8 lat t ice form 
an (8, 240, 1/2) code. T h u s conditions (a ) - (e ) of Theorem 5 apply to 
this code. Conversely we have: 

T H E O R E M 7. If C is a tight spherical 7-design in H8 there is an orthogonal 
transformation mapping C onto the minimal vectors of the E8 lattice. 
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Proof. From Theorem 6 the possible inner products in C are 0, dbl/2, 
± 1 . Let C = {ill, . . . , u?4o| and let L be the lattice in R8 consisting of 
the vectors 

240 

Then L is an even integral lattice (cf. [19]). All such lattices have been 
classified (see [13], [19]), and are direct sums of the lattices An(n ^ 1), 
Dn(n ^ 4) and En(n = 6, 7, 8). The only lattice of this type with at 
least 240 minimal vectors is E8, so L is isometric to E8 and C is isometric 
to the minimal vectors in E&. 

By combining Theorems 5 and 7 we obtain: 

THEOREM 8. There is a unique way (up to isometry) of arranging 240 
nonoverlapping unit spheres in R8 so that they all touch another unit sphere. 

3. Uniqueness of the code of size 56 in 12 7• 

THEOREM 9. If C is a (7, M, 1/3) code then M g 56. 

Proof. The proof here is parallel to the proof of Theorem 4, using the 
polynomial 

jit) = (t + i)(t + i/3y(t- i /3) . 

THEOREM 10. / / (a) C is a (7, 56,1/3) code then (b) C is a tight spherical 
o-design in Œ7, (c) C carries a S-class association scheme, (d) the intersection 
numbers of this association scheme are uniquely determined, and (e) the 
distance distribution of C with respect to any u Ç C is given by 

A,(u) = 4 - i ( u ) = 1, 

(10) 4 i / 8 (u ) = 4_i / 8(u) = 27. 

Conversely (b) implies (a), (c), (d) and (e). 

Proof. The proof is parallel to the proofs of Theorems 5 and 6. 

For example the (7, 56, 1/3) code given in Example 2 has properties 
(a)-(e). Conversely we have: 

THEOREM 11. If C is a tight spherical 5-design in 127 there is an orthogonal 
transformation mapping C onto the (7, 56, 1/3) code obtained from the 
E8 lattice. 

Proof. Let C consist of the points 11.1, . . . , u56 lying on a unit sphere 
R7 centered at P. Choose a point O (in R8) so that 4 u,-OP = 7r/3 for 
all i, and thus 

cos 4 u^Oii; = (1 + 3 cos 2,11^11^/4 
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for all i, j . Let v be a unit vector along OP (see Fig. 1). From Theorem 10 
cos Z u 7Pu ; takes the values d=l and ± 1 / 3 , so cos ^ UiOu; takes 
the values 0, ± 1 / 2 and 1. It follows that the vectors V3/2 Ou t 

(1 g i ^ 56) span an even integral lattice, containing at least 2(56 + 1) 
= 114 minimal vectors (corresponding to ± C , ± v ) . This lattice must 
therefore be either E8 or E7 © Au and the latter is incompatible with 
(10). 

By combining Theorems 10 and 11 we obtain: 

THEOREM 12. There is a unique way (up to isometry) of arranging 56 
nonoverlapping unit spheres in R8 so that they all touch two further, touching, 
unit spheres. 

FIGURE 1. The construction used in the proof of Theorem 11: 2$. u^OP = ir/S for all i, 
|OP| = l / \ / 3 , |Oui| = |Ou2 | = 2 / \ / 3 , and cos 0 - (1 + 3 c o s 0 ) / 4 

4. Uniqueness of the code of size 196560 in Œ24. 

THEOREM 13 ([20]). If C is a (24, M, 1/2) code then M ^ 196560. 

Proof. This parallels that of Theorem 4, using the polynomial 

m = (t + i)(t + è)2(/ + lytHt - \y(t - i). 

THEOREM 14. / / (a) C is a (24, 196560, 1/2) code then (b) C is a tight 
spherical 11-design in 1224, (c) C carries a Q-class association scheme, (d) the 
intersection numbers of this association scheme are uniquely determined, and 
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(e) the distance distribution of C with respect to any u £ C is given by 

^ - i ( u ) = 1, 

4_1 / 2(u) = 4600, 

4_1 / 4(u) = 47104, 

93150. 

Conversely (b) implies (a), (c), (d) and (e). 

Proof. The proof here is parallel to those of Theorems 5 and 6. 

In Example 3 we saw that the minimal vectors in the Leech lattice 
when suitably scaled form a (24, 196560, 1/2) code. We shall require an 
explicit description of this code, and take A to consist of the vectors 

(O + 2c + 4x) / V
/ 8 

and 

(1 + 2c + 4y) /V8, 

where O = 00 . . . 0, 1 = 11 . . . 1, C is any codeword in the binary 
Golay code g2\ (cf. [18]) x, y 6 Z24, and Y,xi 1S even, Y,Ji °dd. The 
minimal vectors in A consist of 

759-27 with components ((±2)8016)/v /8", 

22- ( 2 4 J with components ( (±4) 20 2 2 ) /V8, 

(12) 24-212 with components ( (±l ) 2 3 (=F3) 1 ) / v
/ 8 

and have norm (x, x) = 4. 
This set of 196560 vectors will be denoted by A4. Then |A4 is a (24, 

196560, 1/2) code to which conditions (a)-(e) of Theorem 14 apply. 
Conversely we have: 

THEOREM 15. / / C is a tight spherical 11-design in 1224 there is an ortho­
gonal transformation mapping C onto |A4. 

Proof. From Theorem 14 the distance distribution of C with respect 
to any u G C is given by (11), and in particular the inner products in 
C are 0, ± J , =fc|, ± 1 . Let C = fui, u2, . . . , Ui9656o}, and let L be the 
lattice in R24 consisting of the vectors 

196560 

J2 a>i • 2u,-, at G Z. 

Then 

(13) (2u„ 2u,) G {0, ± 1 , ± 2 , ±41 

and L is an even integral lattice. We shall establish Theorem 15 by 
showing that there is an orthogonal transformation mapping L onto 2A 
and C onto iA4. 

^ i ( u ) = 

(11) A^{U) = 

Aoiu) = 
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LEMMA 16. The minimal norm (v, v) for v £ L, v ^ O, is 4. 

Proof. The minimal norm is even, so suppose it is 2, with (v, v) = 2, 
v Ç L. For u G 2C we have 

| (u ,v ) | = |u|-|v|-|cos 4 (u ,v ) | g 2V2, 

so (u ,v) £ {0, ± 1 , ±2} since L is integral. Suppose (u, v) = 0 for a 
choices of u, (u, v) = 1 for fi choices, and (u, v) = 2 for 7 choices, with 
a -\- 2/3 + 2y = 196560. Without loss of generality we may assume 
v = ( V 2 , 0 , 0 , . . . , 0 ) . 

Since C is an 11-design, 

-j 196560 -j r 

(14) Ï9658ôS/ (u' )=^Jni/
(* )d" f t ) 

holds for any homogeneous polynomial /(£i, £2, . . . , £24) of total degree 
^ 1 1 , where co24 is the surface area of 1224 [9, p. 372]. Let us choose 
f = fk = £1*, for k = 2 and 4, so that 

/fc(u,) = 2 - * " ( ( u „ v ) ) ' . 

The right hand side of (14) can be evaluated from 

^ 2 4 ^ «24 l y O O D U MÇ1/2À4 

8190 ., , 0 945 . , , A 

;—r if * = 2, or 7 ^ ^ if & = 4, 196560 ' 196560 

using (12). The equations (14) now read 

2/3 • ~ + 2 7 . - = 8190, 

2^^ + 2^li-945' 
which imply (3 = 33600, 7 = —210, an impossibility. 

LEMMA 17. The set L4 of vectors of norm 4 in L coincides with 2C. 

Proof. By construction L4 contains 2C. Conversely take u, v G L4. 
Then (u, v) ^ 3, or else 

(u - v, u - v) = (u, u) - 2(u, v) + (v, v) = 2, 

contradicting Lemma 16. Similarly (u, v) 9^ —3. Therefore (u, v) € 
|0, ± 1 , ± 2 , ±4} and % (u, v) ^ TT/3 for u ^ v. From Theorem 13 

|L4| ^ 196560 = |2C|. 

Therefore L4 = 2C 
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For n ^ 3 let Dn be the lattice in Kn spanned by the vectors 

(15) éi = V2(ei + e2), g2 = V2(ei - e2), 

g3 = V2(e2 - e3), . . . , en = V2(en_i - e j , 

with respect to an orthonormal basis {ei, . . . , en} for Rn ([4], [19]). 
There are 2n(n — 1) minimal vectors ((d= \/2)20n~2) in Dn. These lattices 
are nested: D3 Ç A £ . . . • 

LEMMA 18. (i) For any pair of vectors u , v in A4 with % (u, v) = 7r/2 
/ftere are 44 vectors w iw A4 m7/& £ (u, w) = # (v, w) = 7r/3. (ii) T ^ 
mwe statement holds with A4 replaced by L4 = 2C. (iii) r&ere are 2n — 4 
minimal vectors w in Z>n swcfr / t o 2 (gi, w) = %• fe, w) = TT/3. 

Proof, (i) and (iii) are straightforward, and (ii) follows from (i) since 
A4 and 2C are association schemes with the same parameters (Theorem 
14). 

LEMMA 19. L contains a sublattice isometric to Z}3. 

Proof. For the generators gi, g2, g3 of Dz we can take any triple 
u, v, w Ç L4 with ^ (w, */) = 7r/2, ^ (u, w) = ^ (v, w) = 7T/3. Such a 
triple exists by Lemma 18(ii). 

LEMMA 20. L contains a sublattice isometric to Dn, for n = 3, 4 . . . , 24. 

Proof. We proceed by induction on n. Suppose the assertion holds for 
n §: 3. By choosing a suitable orthonormal basis ei, . . . , en L4 contains 
vectors gi, • • • , gw given by (15) which span Dn. By Lemma 18 (ii) there 
are 44 vectors w in L4 with %. (gi, w) = £ (g2, w) = 7r/3. By Lemma 18 
(iii) at least one of these is not a minimal vector of Dn. Then this vector 
w is not in RDn. (For suppose w = wiei + . . . + wnen. Since £ (gi, w) = 
£ (Ê2, w) = 7r/3, W/I = \ /2 and w2 = 0. For 3 <^ i ^ n, 

V2(ei ±e<) e L,r\DnQ2C} 

and therefore 

(w, VZ"(ei±eO) G {0, ± 1 , ±2) 

from (13). This implies w^ = w± = . . . = wn = 0, and contradicts 
(w, w) = 4.) Choose ew+i so that {ei, . . . , en+i} is an orthonormal basis 
for R(Dn, w), and suppose 

w = wiei + . . . + wnen + ze;M+ien+i. 

The above argument shows that w\ = \/2, w2 = . . . = wn = 0, and 
wn+i = ± V2". Therefore <Z>n, w) = Dn+1 C L. 

LEMMA 21. L w isometric to A. 
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Proof, From Lemma 20 we may choose an orthonormal basis 
ei, . . . , e24 so that 2C contains the vectors (d=V2)2022. Let u = 
(ui, . . . , u2i)/V^ be any vector in 2C. From (13) the inner products 
of u with the vectors (±V2)2 022 are 0, dbl, ± 2 , ± 4 . By considering the 
inner products with (\/2, =b\/2, 0, . . . , 0) we obtain 

Ui2 + U,2 + • • • + ^242 = 32, 

è ( t t i ± w 2 ) 6 {0, ± 1 , ± 2 , ± 4 } , 

MI, w2, . . . € {0, ± 1 , ± 2 , ± 3 , ± 4 , ± 5 } . 

Suppose U\ — ± 5 . Then another w2-, say u2l is zero. The inner product 
of u with ( v % A/2"» 0, . . . , 0) is 5/2, a contradiction. Proceeding in this 
way it is not difficult to show that the only possibilities for the com­
ponents of u are 

( (±2) 8 0 1 6 ) /V8, ( (±4) 2 0 2 2 ) /V8, and ( ( ± 1 ) 2 3 ( ± 3 ) 1 ) / V 8 . 

In particular u\, . . . , U2A are integers with the same parity. 
It remains to show that these vectors are the same as those in A4 

(see (12)). To see this we define a binary linear code ^ of length 24 by 
taking as codewords all binary vectors c such that there is a vector u Ç L 
with 

u = (0 + 2c + 4x)/VS" 

for some x 6 Z24. Then as in [5, p. 139] it follows that wt(c) ^ 8 for 
c ^ 0 , and that there are at most 759 codewords of weight 8. Therefore 
| ^ | S 212 (see for example [18, Fig. 1, p. 674]). The argument on page 
140 of [5] now shows that the only way that 2 ^ can contain 196560 
vectors u is for these vectors to coincide with the minimal vectors (12) 
in A4. 

This completes the proof of Theorem 15. By combining Theorems 14 
and 15 we obtain: 

THEOREM 22. There is a unique way (up to isometry) of arranging 
196560 nonoverlapping unit spheres in R24 so that they all touch another 
unit sphere. 

5. Uniqueness of the code of size 4600 in 1223. 

THEOREM 23. / / C is a (23, M, 1/3) code then M g 4600. 

Proof. Use / (0 = (t + 1)(/ + l/3)2/2(/ - 1/3). 

THEOREM 24. / / (a) C is a (23,4600, 1/3) code then (b) C is a tight 
spherical 7-design in 1223, (c) C carries a 4:-class association scheme, (d) the 
intersection numbers of this association scheme are uniquely determined, 
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and (e) the distance distribution of C with respect to any u £ C is given by 

A1(u) = A^(u) = 1, 

4 i / 3 (u ) = ^_i / 3 (u) = 891, 

A0(u) = 2816. 

Conversely (b) implies (a), (c), (d) awd (e). 

For example the (23,4600, 1/3) code given in Example 3 has properties 
(a)-(e). Conversely we have: 

THEOREM 25. If C is a tight spherical 7'-design in Œ23 there is an ortho­
gonal transformation mapping C onto the (23,4600, 1/3) code obtained from 
the Leech lattice. 

Proof. As in the proof of Theorem 11 we embed C = {lli, . . . , u46oo} 
in R24, choosing 0 so that % u ,OP = TT/3 for all i (cf. Fig. 1). Then 

cos £ u , O u ; 6 {—è, 0, i , è , 1}. 

Let L be the even integral lattice in R24 spanned by the vectors \ / 3 Ou*. 
For convenience we set U t = V^Ou*. 

LEMMA 26. The minimum norm (v, v) for v Ç L, v ^ 0, w 4. 

Proof. Suppose v £ L with (v, v) = 2, and write v = v' + v" with 
v'llOP, V ± OP, |v'| = y, |v"| = V2 - ;y2, and U< = U / + U«" with 
U/ | |OP, U / J_ OP, |U/ | = 1, |U"| = VS. Then 

(U„ v) = (U/ ,v ' ) + (U/' f v") G {0, ± 1 , ± 2 ) , 

Since C is a tight 7-design, the set {cos 4 (U/ ' , v") : 1 ^ i S 4600} is 
symmetric about 0. Therefore y Ç {0, =bj, =±=1}. First suppose y = 0. 
Then 

cos*(U/W{-^,-^>°^^}-
Let these values occur 7, 0, a, 0, 7 times respectively. Then by evaluating 
the 0th, 2nd and 4th moments of C with respect to v", as in the proof of 
Lemma 16, we obtain the equations 

a + 2(3 + 2 7 = 4600 

0/3 + 4 7 /3 = 200 

0/8 + 87/9 = 24, 

which imply y — —14, an impossibility. Similarly for the other values 
of y. 

LEMMA 27. L contains a sublattice isometric to Dn,for n = 3, 4, . . . , 24. 

Proof. This is similar to the proof of Lemma 20, starting from the fact 
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that if we take u b u2 6 C with 2 u i O u 2 = 7r/2, there are 42 vectors 
u t Ç C with 

^ U i O u t = ^ u 2 O u 7 = 7T/3. 

Furthermore the vector v = 2 0 P Ç L also satisfies 

^UiOv = 2*u20v = TT/3. 

LEMMA 28. L w isometric to A, aw J C is isometric to the (23, 4600, 1/3) 
code obtained from the Leech lattice. 

Proof. Let L\ denote the set of minimal vectors in L. From Lemma 27 
we may assume that L^ contains all the vectors ( (±4 2 0 2 2 ) ) / \ /8 , and 
that v = 20P is (440 . . . 0 ) / \ / 8 . As in Lemma 21 it follows that the 
vectors in L4 have the form ( (±2) 8 0 1 6 ) /V8, ( (±4 2 0 2 2 ) /V8, and 
((±iyz(±3)l)/VS. Furthermore the vectors Ut begin (22 . . . ) /V8 , 
(40 . . . ) /V8 , (04 . . . ) /V8 , (31 . . . ) /V8 , or (13 . . .)/V8. The code 
^ is defined as in Lemma 21: it is a linear code of minimum distance 8 
containing at most 212 codewords. The zero codeword corresponds to the 
vectors U; beginning (40 . . . ) / V 8 or (04 . . .)/\/?T> and there are at 
most 2-2-22 of them. The codewords of weight 8 beginning 11 . . . cor­
respond to the vectors \Jt beginning (22 . . .)/\/3~- The number of such 
codewords is at most 77 ([18, Fig. 3, p. 688]), and there are at most 
25-77 corresponding U*. The remaining U* come from codewords begin­
ning 10 . . . or 01 . . . , and there are at most 2-210 of them ([18, Fig. 1, 
p. 674]). Since 2-2-22 + 25-77 + 2-210 = 4600, all the inequalities in 
the argument must be exact. In particular the codewords of weight 8 
beginning 11 . . . must form the unique Steiner system S (3, 6, 22) 
(cf. [28]), and hence L must be the Leech lattice. 

This completes the proof of Theorem 25. By combining Theorem 24 
and 25 we obtain: 

THEOREM 29. There is a unique way (up to isometry) of arranging 4600 
unit spheres in R24 so that they all touch two further, touching, unit spheres. 
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