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We consider the problem of detecting communities or modules in networks, groups of vertices with a
higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this
problem is the maximization of the benefit function known as “modularity” over possible divisions of a
network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix
we call the modularity matrix, which plays a role in community detection similar to that played by the graph
Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for
detecting community structure, as well as several other results, including a spectral measure of bipartite
structure in networks and a centrality measure that identifies vertices that occupy central positions within the
communities to which they belong. The algorithms and measures proposed are illustrated with applications to
a variety of real-world complex networks.
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I. INTRODUCTION

Networks have attracted considerable recent attention in
physics and other fields as a foundation for the mathematical
representation of a variety of complex systems, including
biological and social systems, the Internet, the worldwide
web, and many others �1–4�. A common feature of many
networks is “community structure,” the tendency for vertices
to divide into groups, with dense connections within groups
and only sparser connections between them �5,6�. Social net-
works �5�, biochemical networks �7–9�, and information net-
works such as the web �10� have all been shown to possess
strong community structure, a finding that has substantial
practical implications for our understanding of the systems
these networks represent. Communities are of interest be-
cause they often correspond to functional units such as
cycles or pathways in metabolic networks �8,9,11� or collec-
tions of pages on a single topic on the web �10�, but their
influence reaches further than this. A number of recent re-
sults suggest that networks can have properties at the com-
munity level that are quite different from their properties at
the level of the entire network, so that analyses that focus on
whole networks and ignore community structure may miss
many interesting features.

For instance, in some social networks one finds individu-
als with different mean numbers of contacts in different
groups; the individuals in one group might be gregarious,
having many contacts with others, while the individuals in
another group might be more reticent. An example of this
behavior is seen in networks of sexual contacts, where sepa-
rate communities of high- and low-activity individuals have
been observed �12,13�. If one were to characterize such a
network by quoting only a single figure for the average num-
ber of contacts an individual has, one would be missing fea-
tures of the network directly relevant to questions of scien-
tific interest such as epidemiological dynamics �14�.

It has also been shown that vertices’ positions within
communities can affect the role or function they assume. In
social networks, for example, it has long been accepted that
individuals who lie on the boundaries of communities,

bridging gaps between otherwise unconnected people, enjoy
an unusual level of influence as the gatekeepers of informa-
tion flow between groups �15–17�. A surprisingly similar re-
sult is found in metabolic networks, where metabolites that
straddle the boundaries between modules show particular
persistence across species �8�. This finding might indicate
that modules in metabolic networks possess some degree of
functional independence within the cell, allowing vertices
central to a module to change or disappear with relatively
little effect on the rest of the network, while vertices on the
borders of modules are less able to change without affecting
other aspects of the cellular machinery.

One can also consider the communities in a network
themselves to form a higher-level metanetwork, a coarse-
grained representation of the full network. Such coarse-
grained representations have been used in the past as tools
for visualization and analysis �18� but more recently have
also been investigated as topologically interesting entities in
their own right. In particular, networks of modules appear to
have degree distributions with interesting similarities to but
also some differences from the degree distributions of other
networks �9� and may also display so-called preferential at-
tachment in their formation �19�, indicating the possibility of
distinct dynamical processes taking place at the level of the
modules.

For all of these reasons and others besides there has been
a concerted effort in recent years within the physics commu-
nity and elsewhere to develop mathematical tools and com-
puter algorithms to detect and quantify community structure
in networks. A huge variety of community detection tech-
niques have been developed, based variously on centrality
measures, flow models, random walks, resistor networks, op-
timization, and many other approaches �5,8,9,18,20–35�. For
reviews see Refs. �6,36�.

In this paper we focus on one approach to community
detection that has proven particularly effective, the optimiza-
tion of the benefit function known as “modularity” over
the possible divisions of a network. Methods based on this
approach have been found to produce excellent results
in standardized tests �36,37�. Unfortunately, exhaustive
optimization of the modularity demands an impractically
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large computational effort, but good results have been ob-
tained with various approximate optimization techniques, in-
cluding greedy algorithms �24,38�, simulated annealing
�34,39�, and extremal optimization �40�. In this paper we
describe a different approach, in which we rewrite the modu-
larity function in matrix terms, which allows us to express
the optimization task as a spectral problem in linear algebra.
This approach leads to a family of fast new computer algo-
rithms for community detection that produce results competi-
tive with the best previous methods. Perhaps more impor-
tantly, our work also leads to a number of useful insights
about network structure via the close relations we will
demonstrate between communities and matrix spectra.

Our work is by no means the first to find connections
between divisions of networks and matrix spectra. There is a
large literature within computer science on so-called spectral
partitioning, in which network properties are linked to the
spectrum of the graph Laplacian matrix �41–43�. This
method is different from the one introduced here and is not
in general well suited to the problem of community structure
detection. The reasons for this, however, turn out to be inter-
esting and instructive, so we begin our presentation with a
brief review of the traditional spectral partitioning method in
Sec. II. A consideration of the deficiencies of this method in
Sec. III leads us in Secs. IV–VI to introduce and develop at
length our own method, which is based on the characteristic
matrix we call the “modularity matrix.” Sections VII and
VIII explore some further ideas arising from the study of the
modularity matrix but not directly related to community de-
tection. In Sec. IX we give our conclusions. A brief report of
some of the results described in this paper has appeared
previously as Ref. �32�.

II. GRAPH PARTITIONING AND THE LAPLACIAN
MATRIX

There is a long tradition of research in computer science
on graph partitioning, a problem that arises in a variety of
contexts, but most prominently in the development of com-
puter algorithms for parallel or distributed computation. Sup-
pose a computation requires the performance of some num-
ber n of tasks, each to be carried out by a separate process,
program, or thread running on one of c different computer
processors. Typically there is a desired number of tasks or
volume of work to be assigned to each of the processors. If
the processors are identical, for instance, and the tasks are of
similar complexity, we may wish to assign the same number
of tasks to each processor so as to share the workload
roughly equally. It is also typically the case that the indi-
vidual tasks require for their completion results generated
during the performance of other tasks, so tasks must commu-
nicate with one another to complete the overall computation.
The pattern of required communications can be thought of as
a network with n vertices representing the tasks and an edge
joining any pair of tasks that need to communicate, for a
total of m edges. �In theory the amount of communication
between different pairs of tasks could vary, leading to a
weighted network, but we here restrict our attention to the
simplest unweighted case, which already presents interesting
challenges.�

Normally, communications between processors in parallel
computers are slow compared to data movement within pro-
cessors, and hence we would like to keep such communica-
tions to a minimum. In network terms this means we would
like to divide the vertices of our network �the processes� into
groups �the processors� such that the number of edges be-
tween groups is minimized. This is the graph partitioning
problem.

Problems of this type can be solved exactly in polynomial
time �44�, but unfortunately the polynomial in question is of
leading order nc2

, which is already prohibitive for all but the
smallest networks even when c takes the smallest possible
value of 2. For practical applications, therefore, a number of
approximate solution methods have been developed that ap-
pear to give reasonably good results. One of the most widely
used is the spectral partitioning method, due originally to
Fiedler �41� and popularized particularly by Pothen et al.
�42�. We here consider the simplest instance of the method,
where c=2—i.e., where our network is to be divided into just
two nonintersecting subsets such that the number of edges
running between the subsets is minimized.

We begin by defining the adjacency matrix A to be the
matrix with elements

Aij = �1 if there is an edge joining vertices i, j ,

0 otherwise.
� �1�

We restrict our attention in this paper to undirected networks,
so that A is symmetric. �Directed networks, such as citation
networks or food webs, have typically been treated by first
symmetrizing them—i.e., by simply ignoring the directions
of the edges. This approach appears to give good results in
most cases.� The number of edges, R, running between our
two groups of vertices, also called the cut size, is then given
by

R =
1

2 �
i,j in

different

groups

Aij , �2�

where the factor of 1
2 compensates for our counting each

edge twice in the sum.
To put this in a more convenient form, we define an index

vector s with n elements

si = �+ 1 if vertex i belongs to group 1,

− 1 if vertex i belongs to group 2.
� �3�

�Note that s satisfies the normalization condition sTs=n.�
Then

1

2
�1 − sisj� = �1 if i and j are in different groups,

0 if i and j are in the same group,
�

�4�

which allows us to rewrite Eq. �2� as

R = 1
4�

ij

�1 − sisj�Aij . �5�

Noting that the number of edges, ki, connected to a vertex
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i—also called the degree of the vertex—is given by

ki = �
j

Aij , �6�

the first term of the sum in Eq. �5� is

�
ij

Aij = �
i

ki = �
i

si
2ki = �

ij

sisjki�ij , �7�

where we have made use of si
2=1 �since si= ±1� and �ij is 1

if i= j and zero otherwise. Thus

R =
1

4�
ij

sisj�ki�ij − Aij� . �8�

We can write this in matrix form as

R =
1

4
sTLs , �9�

where L is the real symmetric matrix with elements Lij
=ki�ij −Aij or, equivalently �45�,

Lij = �ki if i = j ,

− 1 if i � j and there is an edge �i, j� ,

0 otherwise.
	 �10�

L is called the Laplacian matrix of the graph or sometimes
the admittance matrix. It appears in many contexts in the
theory of networks, such as the analysis of diffusion and
random walks on networks �46�, Kirchhoff’s theorem for the
number of spanning trees �47�, and the dynamics of coupled
oscillators �48,49�. Its properties are the subject of hundreds
of papers in the mathematics and physics literature and are
by now quite well understood. For our purposes, however,
we will need only a few simple observations about the
matrix to make progress.

Our task is to choose the vector s so as to minimize the
cut size, Eq. �9�. Let us write s as a linear combination of the
normalized eigenvectors vi of the Laplacian thus:
s=�i=1

n aivi, where ai=vi
Ts and the normalization sTs=n

implies that

�
i=1

n

ai
2 = n . �11�

Then

R = �
i

aivi
TL�

j

ajv j = �
ij

aiaj� j�ij = �
i

ai
2�i, �12�

where �i is the eigenvalue of L corresponding to the eigen-
vector vi and we have made use of vi

Tv j =�ij. Without loss of
generality, we assume that the eigenvalues are labeled in
increasing order �1��2� ¯ ��n. The task of minimizing R
can then be equated with the task of choosing the non-
negative quantities ai

2 so as to place as much as possible of
the weight in the sum �12� in the terms corresponding to the
lowest eigenvalues and as little as possible in the terms cor-
responding to the highest, while respecting the normalization
constraint �11�.

The sum of every row �and column� of the Laplacian
matrix is zero:

�
j

Lij = �
j

�ki�ij − Aij� = ki − ki = 0, �13�

where we have made use of Eq. �6�. Thus the vector
�1,1,1,¼� is always an eigenvector of the Laplacian with
eigenvalue zero. It is less trivial, but still straightforward, to
demonstrate that all eigenvalues of the Laplacian are non-
negative. �The Laplacian is symmetric and equal to the
square of the edge incidence matrix, and hence its eigenval-
ues are all the squares of real vectors.� Thus the eigenvalue 0
is always the smallest eigenvalue of the Laplacian and the
corresponding eigenvector is v1= �1,1 ,1 , . . . � /
n, correctly
normalized.

Given these observations it is now straightforward to see
how to minimize the cut size R. If we choose s
= �1,1 ,1 , . . . �, then all of the weight in the final sum in Eq.
�12� is in the term corresponding to the lowest eigenvalue
�1=0 and all other terms are zero, since �1,1,1,¼� is an
eigenvector and the eigenvectors are orthogonal. Thus this
choice gives us R=0, which is the smallest value it can take
since it is by definition a non-negative quantity.

Unfortunately, when we consider the physical interpreta-
tion of this solution, we see that it is trivial and uninteresting.
Given the definition �3� of s, the choice s= �1,1 ,1 , . . . � is
equivalent to placing all the vertices in group 1 and none of
them in group 2. Technically, this is a valid division of the
network, but it is not a useful one. Of course the cut size is
zero if we put all the vertices in one of the groups and none
in the other, but such a trivial solution tells us nothing about
how to solve our original problem.

We would like to forbid this trivial solution, so as to force
the method to find a nontrivial one. A variety of ways have
been explored for achieving this goal, of which the most
common is to fix the sizes of the two groups, which is con-
venient if, as discussed above, the sizes of the groups are
specified anyway as a part of the problem. In the present
case, fixing the sizes of the groups fixes the coefficient a1

2 of
the �1 term in the sum in Eq. �12�; if the required sizes of the
groups are n1 and n2, then

a1
2 = �v1

Ts�2 =
�n1 − n2�2

n
. �14�

Since we cannot vary this coefficient, we shift our attention
to the other terms in the sum. If there were no further con-
straints on our choice of s, apart from the normalization con-
dition sTs=n, our course would be clear: R would be mini-
mized by choosing s proportional to the second eigenvector
v2 of the Laplacian, also called the Fiedler vector. This
choice places all of the weight in Eq. �12� in the term involv-
ing the second-smallest eigenvalue �2, also known as the
algebraic connectivity. The other terms would automatically
be zero, since the eigenvectors are orthogonal.

Unfortunately, there is an additional constraint on s im-
posed by the condition, Eq. �3�, that its elements take the
values ±1, which means in most cases that s cannot be cho-
sen parallel to v2. This makes the optimization problem
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much more difficult. Often, however, quite good approxi-
mate solutions can be obtained by choosing s to be as close
to parallel with v2 as possible. This means maximizing the
quantity

�v2
Ts� = ��

i
vi

�2�si� � �
i

�vi
�2�� , �15�

where vi
�2� is the ith element of v2. Here the second relation

follows via the triangle inequality and becomes an equality
only when all terms in the first sum are positive �or nega-
tive�. In other words, the maximum of �v2

Ts� is achieved when
vi

�2�si�0 for all i or, equivalently, when si has the same sign
as vi

�2�. Thus the maximum is obtained with the choice

si = �+ 1 if vi
�2� � 0,

− 1 if vi
�2� � 0.

� �16�

Even this choice, however, is often forbidden by the condi-
tion that the number of +1 and −1 elements of s be equal to
the desired sizes n1 and n2 of the two groups, in which case
the best solution is achieved by assigning vertices to one of
the groups in order of the elements in the Fiedler vector,
from most positive to most negative, until the groups have
the required sizes. For groups of different sizes there are two
distinct ways of doing this, one in which the smaller group
corresponds to the most positive elements of the vector and
one in which the larger group does. We can choose between
them by calculating the cut size R for both cases and keeping
the one that gives the better result.

This then is the spectral partitioning method in its sim-
plest form. It is not guaranteed to minimize R, but particu-
larly in cases where �2 is well separated from the eigenval-
ues above it, it often does very well. Figure 1 shows an
example application typical of those found in the literature to
a two-dimensional mesh such as might be used in parallel
finite-element calculations. This particular mesh is a small
547-vertex example from Bern et al. �50� and is shown com-
plete in panel �a� of the figure. Panel �b� shows the division
of the mesh into two parts of 273 and 274 vertices, respec-
tively, using the spectral partitioning approach, which finds a
cut of size 46 edges in this case.

Although the cut found in this example is a reasonable
one, it does not appear—at least to this author’s eye—that
the vertex groups in Fig. 1�b� constitute any kind of natural
division of the network into “communities.” This is typical
of the problems to which spectral partitioning is usually ap-
plied: in most circumstances the network in question does
not divide up easily into groups of the desired sizes, but one
must do the best one can. For these types of tasks, spectral
partitioning is an effective and appropriate tool. The task of
finding natural community divisions in a network, however,
is quite different and demands a different approach, as we
now discuss.

III. COMMUNITY STRUCTURE AND MODULARITY

Despite its evident success in the graph partitioning arena,
spectral partitioning is a poor approach for detecting natural
community structure in real-world networks, which is the
primary topic of this paper. The issue is with the condition
that the sizes of the groups into which the network is divided
be fixed. This condition is neither appropriate nor realistic
for community detection problems. In most cases we do not
know in advance the sizes of the communities in a network
and choosing arbitrary sizes will usually preclude us from
finding the best solution to the problem. We would like in-
stead to let the group sizes be free, but the spectral partition-
ing method breaks down if we do this, as we have seen: if
the group sizes are not fixed, then the minimum cut size is
always achieved by putting all vertices in one group and
none in the other. Indeed, this statement is considerably
broader than the spectral partitioning method itself, since any
method that correctly minimizes the cut size without con-
straint on the group sizes is sure to find, in the general case,
that the minimum value is achieved for this same trivial
division.

Several approaches have been proposed to get around this
problem. For instance, the ratio cut method �51� minimizes
not the simple cut size R but the ratio R / �n1n2�, where n1 and
n2 are again the sizes of the two groups of vertices. This
penalizes configurations in which either of the groups is
small and hence favors balanced divisions over unbalanced
ones, releasing us from the obligation to fix the group sizes.
Spectral algorithms based on ratio cuts have been proposed
�52,53� and have proved useful for certain classes of parti-
tioning problems. Still, however, this approach effectively
chooses the group sizes, at least approximately, since it is
biased in favor of divisions into equal-sized parts. Variations
are possible that are biased towards other, unequal part sizes,
but then one must choose those part sizes and so again we
have a situation in which we need to know in advance the
sizes of the groups if we are to get the “right” results. The
ratio cut method does allow some leeway for the sizes to
vary around their specified values, which makes it more flex-
ible than the simple minimum cut method, but at its core it
still suffers from the same drawbacks that make standard
spectral partitioning inappropriate for community detection.

The fundamental problem with all of these methods is that
cut sizes are simply not the right thing to optimize because
they do not accurately reflect our intuitive concept of

(a) (b)

FIG. 1. �Color online� �a� The mesh network of Bern et al. �50�.
�b� The best division into equal-sized parts found by the spectral
partitioning algorithm based on the Laplacian matrix.
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network communities. A good division of a network into
communities is not merely one in which the number of edges
running between groups is small. Rather, it is one in which
the number of edges between groups is smaller than ex-
pected. Only if the number of between-group edges is sig-
nificantly lower than would be expected purely by chance
can we justifiably claim to have found significant community
structure. Equivalently, we can examine the number of edges
within communities and look for divisions of the network in
which this number is higher than expected—the two ap-
proaches are equivalent since the total number of edges is
fixed and any edges that do not lie between communities
must necessarily lie inside them.

These considerations lead us to shift our attention
from measures based on pure cut size to a modified benefit
function Q defined by

Q = �number of edges within communities�

− �expected number of such edges� . �17�

This benefit function is called modularity �18,54�. It is a
function of the particular division of the network into groups,
with larger values indicating stronger community structure.
Hence we should, in principle, be able to find good divisions
of a network into communities by optimizing the modularity
over possible divisions. This approach, proposed in �24� and
since pursued by a number of authors �8,32,38–40�, has
proven highly effective in practice �36� and is the primary
focus of this article.

The first term in Eq. �17� is straightforward to calculate.
The second, however, is rather vague and needs to be made
more precise before we can evaluate the modularity. What
exactly do we mean by the “expected number” of edges
within a community? Answering this question is essentially
equivalent to choosing a “null model” against which to com-
pare our network. The definition of the modularity involves a
comparison of the number of within-group edges in a real
network and the number in some equivalent randomized
model network in which edges are placed without regard to
community structure.

It is one of the strengths of the modularity approach that
it makes the role of this null model explicit and clear.
All methods for finding communities are, in a sense, assum-
ing some null model, since any method must make a value
judgment about when a particular density of edges is signifi-
cant enough to define a community. In most cases, this
assumption is hidden within the workings of a computer al-
gorithm and is difficult to disentangle, even when the algo-
rithm itself is well understood. By bringing its assumptions
out into the open, the modularity method gives us more con-
trol over our calculations and more understanding of their
implications.

Our null model must have the same number of vertices, n,
as the original network, so that we can divide it into the same
groups for comparison, but apart from this we have a good
deal of freedom about our choice of model. We here consider
the broad class of randomized models in which we specify
separately the probability Pij for an edge to fall between
every pair of vertices i , j. More precisely, Pij is the expected

number of edges between i and j, a definition that allows for
the possibility that there may be more than one edge between
a pair of vertices, which happens in certain types of net-
works. We will consider some particular choices of Pij in a
moment, but for now let us pursue the developments in
general form.

Given Pij, the modularity can be defined as follows. The
actual number of edges falling between a particular pair of
vertices i and j is Aij, Eq. �1�, and the expected number is, by
definition, Pij. Thus the actual minus expected number of
edges between i and j is Aij − Pij and the modularity is �pro-
portional to� the sum of this quantity over all pairs of vertices
belonging to the same community. Let us define gi to be the
community to which vertex i belongs. Then the modularity
can be written

Q =
1

2m
�
ij

�Aij − Pij���gi,gj� , �18�

where ��r ,s�=1 if r=s and 0 otherwise and m is again the
number of edges in the network. The extra factor of 1 /2m in
Eq. �18� is purely conventional; it is included for compatibil-
ity with previous definitions of the modularity and plays no
part in the maximization of Q since it is a constant for any
given network. A special case of Eq. �18� was given previ-
ously by the present author in �55� and independently, in
slightly different form, by White and Smyth �56�. A number
of other expressions for the modularity have also been
presented by various authors �18,39,40� and are convenient
in particular applications. Also of interest is the derivation
of the modularity given recently by Reichardt and Bornholdt
�34�, which is quite general and provides an interesting
alternative to the derivation presented here.

Returning to the null model, how should Pij be chosen?
The choice is not entirely unconstrained. First, we consider
in this paper only undirected networks, which implies that
Pij = Pji. Second, it is axiomatically the case that Q=0 when
all vertices are placed in a single group together: by defini-
tion, the number of edges within groups and the expected
number of such edges are both equal to m in this case.
Setting all gi equal in Eq. �18�, we find that �ij�Aij − Pij�=0
or, equivalently,

�
ij

Pij = �
ij

Aij = 2m . �19�

This equation says that we are restricted to null models in
which the expected number of edges in the entire network
equals the actual number of edges in the original network—a
natural choice if our comparison of numbers of edges within
groups is to have any meaning.

Beyond these basic considerations, there are many pos-
sible choices of null models and several have been consid-
ered previously in the literature �18,27,57�. Perhaps the sim-
plest is the standard �Bernoulli� random graph, in which
edges appear with equal probability Pij = p between all vertex
pairs. With a suitably chosen value of p this model can be
made to satisfy Eq. �19�, but as many authors have pointed
out �58–60�, the model is not a good representation of most
real-world networks. A particularly glaring aspect in which it
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errs is its degree distribution. The random graph has a
binomial degree distribution �or Poisson in the limit of large
graph size�, which is entirely unlike the right-skewed degree
distributions found in most real-world networks �61,62�. A
much better null model would be one in which the degree
distribution is approximately the same as that of the real-
world network of interest. To satisfy this demand we will
restrict our attention in this paper to models in which the
expected degree of each vertex within the model is equal to
the actual degree of the corresponding vertex in the real net-
work. Noting that the expected degree of vertex i is given by
� jPij, we can express this condition as

�
j

Pij = ki. �20�

If this constraint is satisfied, then Eq. �19� is automatically
satisfied as well, since �iki=2m.

Equation �20� is a considerably more stringent constraint
than Eq. �19�—in most cases, for instance, it excludes the
Bernoulli random graph—but it is one that we believe makes
good sense and one, moreover, that has a variety of desirable
consequences for the developments that follow.

The simplest null model in this class, and the only one
that has been considered at any length in the past, is the
model in which edges are placed entirely at random, subject
to the constraint �20�. That is, the probability that an end of a
randomly chosen edge attaches to a particular vertex i de-
pends only on the expected degree ki of that vertex and the
probabilities for the two ends of a single edge are indepen-
dent of one another. This implies that the expected number of
edges Pij between vertices i and j is the product f�ki�f�kj� of
separate functions of the two degrees, where the functions
must be the same since Pij is symmetric. Then Eq. �20�
implies

�
j=1

n

Pij = f�ki��
j=1

n

f�kj� = ki, �21�

for all i and hence f�ki�=Cki for some constant C. And Eq.
�19� says that

2m = �
ij

Pij = C2�
ij

kikj = �2mC�2, �22�

and hence C=1/
2m and

Pij =
kikj

2m
. �23�

This model has been studied in the past in its own right as a
model of a network,—for instance, by Chung and Lu �63�. It
is also closely related to the configuration model, which has
been studied widely in the mathematics and physics litera-
ture �63–66�. Indeed, essentially all expected properties of
our model and the configuration model are identical in the
limit of large network size, and hence Eq. �23� can be con-
sidered equivalent to the configuration model in this limit
�67�.

Although many of the developments outlined in this paper
are true for quite general choices of the null model used to
define the modularity, the choice �23� is the only one we will

pursue here. It is worth keeping mind, however, that other
choices are possible: Massen and Doye �57�, for instance,
have used a variant of the configuration model in which
multi-edges and self-edges were excluded. And further
choices could be useful in specific cases, such as cases where
there are strong correlations between the degrees of vertices
�68,69� or where there is a high level of network transitivity
�60�.

IV. SPECTRAL OPTIMIZATION OF MODULARITY

Once we have an explicit expression for the modularity
we can determine the community structure by maximizing it
over possible divisions of the network. Unfortunately, ex-
haustive maximization over all possible divisions is compu-
tationally intractable because there are simply too many di-
visions, but various approximate optimization methods have
proven effective �8,24,34,38–40,57�. Here, we develop a
matrix-based approach analogous to the spectral partitioning
method of Sec. II, which leads not only to a whole array of
possible optimization algorithms but also to new insights
into the nature and implications of community structure in
networks.

A. Leading eigenvector method

As before, let us consider initially the division of a net-
work into just two communities and denote a potential such
division by an index vector s with elements as in Eq. �3�. We
notice that the quantity 1

2 �sisj +1� is 1 if i and j belong to the
same group and 0 if they belong to different groups or, in the
notation of Eq. �18�,

��gi,gj� =
1

2
�sisj + 1� . �24�

Thus we can write Eq. �18� in the form

Q =
1

4m
�
ij

�Aij − Pij��sisj + 1�

=
1

4m
�
ij

�Aij − Pij�sisj , �25�

where we have in the second line made use of Eq. �19�. This
result can conveniently be rewritten in matrix form as

Q =
1

4m
sTBs , �26�

where B is the real symmetric matrix having elements

Bij = Aij − Pij . �27�

We call this matrix the modularity matrix, and it plays a role
in the maximization of the modularity equivalent to that
played by the Laplacian in standard spectral partitioning:
Equation �26� is the equivalent of Eq. �9� for the cut size, and
matrix methods can thus be applied to the modularity that are
the direct equivalents of those developed for spectral
partitioning, as we now show.
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First, let us point out a few important properties of the
modularity matrix. Equations �6� and �20� together imply
that all rows �and columns� of the modularity matrix sum to
zero:

�
j

Bij = �
j

Aij − �
j

Pij = ki − ki = 0. �28�

This immediately implies that for any network the vector
�1,1,1,¼� is an eigenvector of the modularity matrix with
eigenvalue zero, just as is the case with the Laplacian. Unlike
the Laplacian, however, the eigenvalues of the modularity
matrix are not necessarily all of one sign and in practice the
matrix usually has both positive and negative eigenvalues.
This observation—and the eigenspectrum of the modularity
matrix in general—are, as we will see, closely tied to the
community structure of the network.

Working from Eq. �26� we now proceed by direct analogy
with Sec. II. We write s as a linear combination of the
normalized eigenvectors ui of the modularity matrix,
s=�i=1

n aiui with ai=ui
Ts. Then

Q =
1

4m
�

i

ai
2�i, �29�

where �i is the eigenvalue of B corresponding to the eigen-
vector ui. We now assume that the eigenvalues are labeled in
decreasing order �1��2� ¯ ��n and the task of maximiz-
ing Q is one of choosing the quantities ai

2 so as to place as
much as possible of the weight in the sum �29� in the terms
corresponding to the largest �most positive� eigenvalues.

As with ordinary spectral partitioning, this would be a
simple task if our choice of s were unconstrained �apart from
normalization�: we would just choose s proportional to the
leading eigenvector u1 of the modularity matrix. But the el-
ements of s are restricted to the values si= ±1, which means
that s cannot normally be chosen parallel to u1. Again as
before, however, good approximate solutions can be obtained
by choosing s to be as close to parallel with u1 as possible,
which is achieved by setting

si = �+ 1 if ui
�1� � 0,

− 1 if ui
�1� � 0.

� �30�

This then is our first and simplest algorithm for community
detection: we find the eigenvector corresponding to the most
positive eigenvalue of the modularity matrix and divide the
network into two groups according to the signs of the
elements of this vector.

In practice, this method works nicely, as discussed in �32�.
Making the choice �23� for our null model, we have applied
it to a variety of standard and less standard test networks and
find that it does a good job of finding community divisions.
Figure 2 shows a representative example, an animal social
network assembled and studied by Lusseau et al. �70�. The
vertices in this network represent 62 bottlenose dolphins liv-
ing in Doubtful Sound, New Zealand, with social ties
between dolphin pairs established by direct observation
over a period of several years. This network is of particular
interest because, during the course of the study, the dolphin
group split into two smaller subgroups following the depar-

ture of a key member of the population. The subgroups are
represented by the shapes of the vertices in the figure. The
dotted line denotes the division of the network into two
equal-sized groups found by the standard spectral partition-
ing method. While, as expected, this method does a credit-
able job of dividing the network into groups of these particu-
lar sizes, it is clear to the eye that this is not the natural
community division of the network and neither does it cor-
respond to the division observed in real life. The spectral
partitioning method is hamstrung by the requirement that we
specify the sizes of the two communities; unless we know
what they are in advance, blind application of the method
will not usually find the “right” division of the network.

The method based on the leading eigenvector of the
modularity matrix, however, does much better. Uncon-
strained by the need to find groups of any particular size, this
method finds the division denoted by the solid line in the
figure, which, as we see, corresponds quite closely to the
split actually observed—all but three of the 62 dolphins are
placed in the correct groups.

The magnitudes of the elements of the eigenvector u1 also
contain useful information about the network, indicating, as
discussed in �32�, the “strength” with which vertices belong
to the communities in which they are placed. As an example
of this phenomenon consider Fig. 3, which depicts the net-
work of political books from Ref. �32�. This network, com-
piled by Krebs �83�, represents recent books on U.S. politics,
with edges connecting pairs of books that are frequently pur-
chased by the same customers of the online bookseller Ama-
zon.com. Applying our method, we find that the network
divides as shown in the figure, with the colors of the vertices
representing the values of the elements of the eigenvector.
The two groups correspond closely to the apparent alignment
of the books according to left-wing and right-wing points
of view �32� and are suggestively colored blue and red in
the figure �color version online� �71�. The most blue and
most red vertices are those that, by our calculation, belong

modularity method

spectral partitioning

FIG. 2. �Color online� The dolphin social network of Lusseau et
al. �70�. The dashed curve represents the division into two equally
sized parts found by a standard spectral partitioning calculation
�Sec. II�. The solid curve represents the division found by the
modularity-based method of this section. And the squares and
circles represent the actual division of the network observed when
the dolphin community split into two as a result of the departure of
a keystone individual. �The individual who departed is represented
by the triangle.�
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most strongly to the two groups and are thus, perhaps,
the “most left-wing” and “most right-wing” of the books
under consideration. Those familiar with current U.S. politics
will be unsurprised to learn that the most left-wing book
in this sense was the polemical Bushwacked by Molly
Ivins and Lou Dubose. Perhaps more surprising is the most
right-wing book: A National Party No More by Zell Miller
�72�.

An alternative viewpoint might be to consider the magni-
tudes of the elements of the leading eigenvector to define a
“fuzzy” division of the network into communities. Some re-
searchers have explored methods for defining communities
with blurred boundaries that allow vertices to belong to two
or more communities at once �9,27,73�. In some cases this
type of fuzzy division may give a more accurate picture of
the true organization of the network than a division that
strictly requires each vertex to belong to exactly one com-
munity. One could regard the elements of the leading eigen-
vector of the modularity matrix to measure the extent to
which the vertices belong to each of our two communities,
with vertices whose corresponding elements are close to zero
having nearly equal membership in both.

B. Other eigenvectors of the modularity matrix

The algorithm described in the previous section has two
obvious shortcomings. First, it divides networks into only
two communities, while real-world networks can certainly
have more than two. Second, it makes use only of the leading
eigenvector of the modularity matrix and ignores all the oth-
ers, which throws away useful information contained in
those other vectors. Both of these shortcomings are remedied
by the following generalization of the method.

Consider the division of a network into c nonoverlapping
communities, where c may now be greater than 2. Following
Alpert and Yao �74� and more recently White and Smyth
�56�, let us define an n�c index matrix S with one column
for each community: S= �s1�s2�¯ �sc��. Each column is an
index vector now of �0, 1� elements �rather than ±1 as
previously�, such that

Sij = �1 if vertex i belongs to community j ,

0 otherwise.
� �31�

Note that the columns of S are mutually orthogonal, that the
rows each sum to unity, and that the matrix satisfies the
normalization condition Tr�STS�=n.

Observing that the � symbol in Eq. �18� is now given by

��gi,gj� = �
k=1

c

SikSjk, �32�

the modularity for this division of the network is

Q = �
i,j=1

n

�
k=1

c

BijSikSjk = Tr�STBS� , �33�

where here and henceforth we suppress the leading multipli-
cative constant 1 /2m from Eq. �18�, which has no effect on
the position of the maximum of the modularity.

Writing B=UDUT, where U= �u1�u2�¯ � is the matrix
of eigenvectors of B and D is the diagonal matrix of
eigenvalues Dii=�i, we then find that

Q = �
j=1

n

�
k=1

c

� j�u j
Tsk�2. �34�

Again we wish to maximize this modularity, but now we
have no constraint on the number c of communities; we can
give S as many columns as we like in our effort to make Q as
large as possible.

If the elements of the matrix S were unconstrained apart
from the basic conditions on the rows and columns men-
tioned above, a choice of c communities would be equivalent
to choosing c−1 independent, mutually orthogonal columns
s1¯sc−1. �Only c−1 of the columns are independent, the last
being fixed by the condition that the rows of S sum to unity.�
In this case our path would be clear: Q would be maximized
by choosing the columns proportional to the leading eigen-
vectors of B. However, only those eigenvectors correspond-
ing to positive eigenvalues can give positive contributions to
the modularity, so the optimal modularity would be achieved
by choosing exactly as many independent columns of S as
there are positive eigenvalues or, equivalently, by choosing
the number of groups c to be 1 greater than the number of
positive eigenvalues.

Unfortunately, our problem has the additional constraint
that the index vectors si have only binary �0, 1� elements,
which means it may not be possible to find as many
index vectors making positive contributions to the modular-
ity as the set of positive eigenvalues suggests. Thus the num-
ber of positive eigenvalues, plus 1, is an upper bound on the
number of communities and again we see that there is an
intimate connection between the properties of the modularity
matrix and the community structure of the network it
describes.

C. Vector partitioning algorithm

In Sec. IV A we maximized the modularity approximately
by focusing solely on the term in Q proportional to the larg-
est eigenvalue of B. Let us now make the more general
�and often better� approximation of keeping the leading p
eigenvalues, where p may be anywhere between 1 and n.
Some of the eigenvalues, however, may be negative, which
will prove inconvenient. To get around this we rewrite Eq.
�33� thus

FIG. 3. �Color online� The network of political books described
in the text. Vertex shades represent the values of the corresponding
elements of the leading eigenvector of the modularity matrix.
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Q = n	 + Tr�STU�D − 	I�UTS�

= n	 + �
j=1

n

�
k=1

c

�� j − 	�
�
i=1

n

UijSik�2

, �35�

where 	 is a constant whose value we will choose shortly
and we have made use of Tr�STS�=n and the fact that U is
orthogonal.

Now, employing an argument similar to that used for or-
dinary spectral partitioning in �74�, let us define a set of
vertex vectors ri, i=1, . . . ,n, of dimension p, such that the
jth component of the ith vector is

�ri� j = 
� j − 	Uij . �36�

Provided we choose 	��p, ri is guaranteed real for all i.
Then, dropping terms in Eq. �35� proportional to the smallest
n− p of the factors � j −	, we have

Q � n	 + �
j=1

p

�
k=1

c 
�
i=1

n


� j − 	UijSik�2

= n	 + �
k=1

c

�
j=1

p


 �
i�Gk

�ri� j�2
= n	 + �

k=1

c

�Rk�2, �37�

where Gk is the set of vertices comprising group k and the
community vectors Rk, k=1, . . . ,c, are

Rk = �
i�Gk

ri. �38�

The community structure problem is now equivalent to
choosing a division of the vertices into groups so as to maxi-
mize the magnitudes of the vectors Rk. This means we need
to arrange that the individual vertex vectors ri going into
each group point in approximately the same direction.
Problems of this type are called vector partitioning
problems.

The parameter p controls the balance between the com-
plexity of the vector partitioning problem and the accuracy
of the approximation we make by keeping only some of the
eigenvalues. The calculations will be faster but less accurate
for smaller p and slower but more accurate for larger. For the
special case p=n where we keep all of the eigenvalues, Eq.
�37� is exact. In this case, we note that the vertex vectors
have the property

ri
Tr j = �

k=1

n

Uik��k − 	�Ujk = Bij − 	�ij . �39�

It is then simple to see that Eq. �37� is trivially equivalent to
the fundamental definition �18� of the modularity, so in the
p=n case our mapping to a vector partitioning problem gives
little insight into the modularity maximization problem. The
real advantage of our approach comes when p�n, where the
method extracts precisely those factors that make the princi-
pal contributions to the modularity—i.e., those correspond-
ing to the largest eigenvalues—discarding those that have
relatively little effect. In practice, as we have seen for the
single-eigenvector algorithm, the main features of the com-
munity structure are often captured by just the first eigenvec-

tor or perhaps the first few, which allows us to reduce the
complexity of our optimization problem immensely.

The approach is similar in concept to the standard tech-
nique of principal components analysis �PCA� used to reduce
high-dimensional data sets to manageably small dimensions
by focusing on the eigendirections along which the variance
about the mean is greatest and ignoring directions that con-
tribute little. In fact, this similarity is more than skin deep:
the form of our modularity matrix is closely analogous to the
covariance matrix whose eigenvectors are the basis for PCA.
The elements of the covariance matrix are correlation func-
tions of the form �xy�− �x��y�, where x and y denote mea-
sured variables in the data set. Thus the covariance is the
difference between the actual value of the mean product �xy�
of two variables and the value �x��y� expected by chance for
that product if the variables were uncorrelated. Similarly, the
elements Bij =Aij −kikj /2m of the modularity matrix are equal
to the actual number of edges Aij between a given pair of
vertices minus the number kikj /2m expected by chance, ex-
pressed in a product form. In a sense, our spectral method for
modularity optimization can be regarded as a “principal
components analysis for networks.” This aspect of the
method is clear, for instance, in the study of political books
represented in Fig. 3: the leading eigenvector used to assign
the colors to the vertices in the figure is playing a role
equivalent to the eigendirections in PCA, defining a “direc-
tion of greatest variation” in the structure of the network.
The vertex vectors of Eq. �36� are similarly analogous to the
low-dimensional projections used in PCA. This suggests, for
instance, that the vectors for p=2 or 3 could be used to
define graph layouts for visualizing networks in two or three
dimensions. Either of the end points of the vectors could
define vertex positions themselves or they could be used as
starting positions for a spring embedding visualizer or other
more conventional layout scheme.

Returning to our algorithm, let us consider again the spe-
cial case of the division of a network into just two commu-
nities. �Multiway division is considered in Sec. VI.� Since �1,
1, 1,¼� is always an eigenvector of the modularity matrix
and the eigenvectors are orthogonal, the elements of all other
eigenvectors must sum to zero:

�
i=1

n

�u j�i = 
nu1
Tu j = 0. �40�

But Eq. �36� then implies that

�
i=1

n

�ri� j = 
� j − 	�
i=1

n

Uij = 
� j − 	�
i=1

n

�u j�i = 0, �41�

and hence

�
i=1

n

ri = 0 �42�

for any value of p. This in turn implies that the community
vectors Rk also sum to zero:

FINDING COMMUNITY STRUCTURE IN NETWORKS¼ PHYSICAL REVIEW E 74, 036104 �2006�

036104-9



�
k=1

c

Rk = �
k=1

c

�
i�Gk

ri = �
i=1

n

ri = 0. �43�

And as a special case of this last result, any division of a
network into two communities has community vectors R1
and R2 that are of equal magnitude and oppositely directed.

Furthermore, the maximum of the modularity, Eq. �37�, is
always achieved when each individual vertex vector ri has a
positive inner product with the community vector of the
community to which the vertex belongs. To see this, observe
that removing a vertex i from a community k where Rk ·ri
�0 produces a change in the corresponding term �Rk�2 in Eq.
�37� of

�Rk − ri�2 − �Rk�2 = �ri�2 − 2Rk · ri 
 0. �44�

Similarly adding vertex i to a community for which Rk ·ri

0 also increases �Rk�2. Hence, we can always increase the
modularity by moving vertices until they are in groups such
that Rk ·ri
0.

Taken together, these results imply that possible candi-
dates for the optimal division of a network into two groups
are fully specified by just the direction of the single vector
R1. Once we have this direction, we know that the vertices
divide according to whether their projection along this direc-
tion is positive or negative. Alternatively, we can consider
the direction of R1 to define a perpendicular plane through
the origin in the p-dimensional vector space occupied by the
vertex vectors ri. The vertices then divide according to which
side of this plane their vectors fall on. Finding the maximum
of the modularity is then a matter of choosing this bisecting
plane to maximize the magnitude of R1.

In general, this still leaves us with a moderately difficult
optimization problem: the number of bisecting planes that
give distinct partitions of the vertex vectors is large and dif-
ficult to enumerate as the dimension p of the space becomes
large. For the case p=2, however, a relatively simple solu-
tion exists. Consider Fig. 4, which shows a typical example
of the vertex vectors �75�. In this two-dimensional case, there
are only n topologically distinct choices of the bisecting
plane �actually just a line in this case, denoted by the dashed
line in the figure�, and furthermore the divisions of the ver-
tices that these choices represent change by only a single
vertex at a time as we rotate the plane about the origin. This
makes it computationally simple to perform the rotation,
keep track of the value of R1, and so find the maximum of
the modularity within this approximation. Evaluating the
magnitude of R1 involves a constant number of operations
each time we move the line, and hence the total work in-
volved in finding the maximum is O�n� for all n possible
positions, which is the same as the O�n� operations needed to
separate the vertices in the p=1 case.

For p
2, we do not know of an efficient method to enu-
merate exhaustively all topologically distinct bisecting
planes in the vertex vector space, and hence we have to turn
to approximate methods for solving the vector partitioning
problem. A number of reasonable heuristics have been de-
scribed in the past. We have found acceptable though not
spectacular results, for instance, with the MELO algorithm of

�74�, which is essentially a greedy algorithm in which a
grouping of vectors is built up by repeatedly adding to it the
vector that makes the largest contribution to Q.

D. Choice of �

Before implementing any of these methods, a crucial
question we must answer is what value we should choose for
the parameter 	. By tuning this value we can improve the
accuracy of our approximation to Q as follows.

By dropping the n− p most negative eigenvalues, we are
in effect making an approximation to the matrix B−	I in
which it takes not its full value U�D−	I�UT, but an approxi-
mate value U�D�−	I��UT, where D� and I� are the matrices
D and I with the last n− p diagonal elements set to zero. We
can quantify the error this introduces by calculating the sum
of the squares of the elements of the difference between the
two matrices, which is given by

�2 = Tr�U�D − 	I�UT − U�D� − 	I��UT�2

= Tr��D − 	I� − �D� − 	I���2 = �
i=p+1

n

��i − 	�2, �45�

where in the second line we have made use of the fact that U
is orthogonal.

Minimizing this error by setting the derivative d�2 /d	
=0, we find

	 =
1

n − p
�

i=p+1

n

�i. �46�

In other words, the minimal mean-square error introduced by
our approximation is achieved by setting 	 equal to the mean
of the eigenvalues that have been dropped. The only excep-
tion is when p=n, where the choice of 	 makes no difference
since no approximation is being made anyway. In our calcu-
lations we have used 	=�n in this case, but any choice 	
��n would work equally well.

FIG. 4. �Color online� A plot of the vertex vectors ri for a small
network with p=2. The dotted line represents one of the n possible
topologically distinct cut planes.
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V. IMPLEMENTATION

Implementation of the methods described in Sec. IV is
straightforward. The leading-eigenvector method of Sec.
IV A requires us to find only the single eigenvector of the
modularity matrix B corresponding to the most positive ei-
genvalue. This is most efficiently achieved by the direct mul-
tiplication or power method. Starting with a trial vector, we
repeatedly multiply by the modularity matrix and—unless
we are unlucky enough to have chosen another eigenvector
as our trial vector—the result will converge to the eigenvec-
tor of the matrix having the eigenvalue of largest magnitude.
In some cases this eigenvalue will be the most positive one,
in which case our calculation ends at this point. In other
cases the eigenvalue of largest magnitude may be negative. If
this happens then, denoting this eigenvalue by �n, we calcu-
late the shifted matrix B−�nI, which has eigenvalues �i
−�n �necessarily all non-negative� and the same eigenvectors
as the modularity matrix itself. Then we repeat the power-
method calculation for this new matrix and this time the
eigenvalue of largest magnitude must be �1−�n and the
corresponding eigenvector is the one we are looking for.

For the method of Sec. IV B, we require either all of the
eigenvectors of the modularity matrix or a subset corre-
sponding to the p most positive eigenvalues. These are most
conveniently calculated using the Lanczos method or one of
its variants �76�. The fundamental matrix operation at the
heart of the Lanczos method is again multiplication of the
matrix B into a trial vector.

Efficient implementation of any of these methods thus
rests upon our ability to rapidly multiply an arbitrary vector
x by the modularity matrix. This presents a problem because
the modularity matrix is dense, and hence it appears that
matrix multiplications will demand O�n2� time each, where n
is, as before, the number of vertices in the network �which is
also the size of the matrix�. By contrast, the equivalent cal-
culation in standard spectral partitioning is much faster be-
cause the Laplacian matrix is sparse, having only O�n+m�
nonzero elements, where m is the number of edges in the
network.

For the standard choice, Eq. �23�, of null model used to
define the modularity, however, it turns out that we can mul-
tiply by the modularity matrix just as fast as by the Laplacian
by making use of the special structure of the matrix. In vec-
tor notation the modularity matrix can in this case be written

B = A −
kkT

2m
, �47�

where A is the adjacency matrix, Eq. �1�, and k is the
n-element vector whose elements are the degrees ki of the
vertices. Then

Bx = Ax −
kTx

2m
k . �48�

Since the adjacency matrix is sparse, having only O�m�
elements, the first term can be evaluated in O�m� time, while
the second requires us to evaluate the inner product kTx
only once and then multiply it into each element of k in turn,
both operations taking O�n� time. Thus the entire matrix

multiplication can be completed in O�m+n� time, just as
with the normal Laplacian matrix. If a shift of the eigenval-
ues is required to find the most positive one, as described
above, then there is an additional term −�nI in the matrix,
but this also can be multiplied into an arbitrary vector in
O�n� time, so again the entire operation can be completed in
O�m+n� time.

Typically O�n� matrix multiplications are required for ei-
ther the power method or the Lanczos method to converge to
the required eigenvalues, and hence the calculation takes
O(�m+n�n) time overall. In the common case in which the
network is sparse and m�n, this simplifies to O�n2�.

While this is, essentially, the end of the calculation for the
power method, the Lanczos method unfortunately demands
more effort to find the eigenvectors themselves. In fact, it
takes O�n3� time to find all eigenvectors of a matrix using the
Lanczos method, which is quite slow. There are, on the other
hand, variants of the Lanczos method �as well as other meth-
ods entirely� that can find just a few leading eigenvectors
faster than this, which makes calculations that focus on a
fixed small number of eigenvectors preferable to ones that
use all eigenvectors. In our calculations we have primarily
concentrated on algorithms that use only one or two eigen-
vectors, which typically run in time O�n2� on a sparse
network.

A. Refinement of the modularity

The methods for spectral optimization of the modularity
described in Sec. IV are only approximate. Indeed, the prob-
lem of modularity optimization is formally equivalent to an
instance of the NP-hard MAX-CUT problem, so it is almost
certainly the case that no polynomial-time algorithm exists
that will find the modularity optimum in all cases. Given that
the algorithms we have described run in polynomial time, it
follows that they must fail to find the optimum in some cases
and hence that there is room for improvement of the results
�77�.

In standard graph partitioning applications it is common
to use a spectral approach based on the graph Laplacian as a
first pass at the problem of dividing a network. The spectral
method gives a broad picture of the general shape the divi-
sion should take, but there is often room for improvement.
Typically another algorithm, such as the Kernighan-Lin al-
gorithm �78�, which swaps vertex pairs between groups in an
effort to reduce the cut size, is used to refine this first pass,
and the resulting two-stage joint strategy gives considerably
better results than either stage on its own.

We have found that a similar joint strategy gives good
results in the present case also: the divisions found with our
spectral approach can be improved in small but significant
ways by adding a refinement step akin to the Kernighan-Lin
algorithm. As described in �32�, we take an initial division
into two communities derived, for instance, from the
leading-eigenvector method of Sec. IV A and move single
vertices between the communities so as to increase the value
of the modularity as much as possible, with the constraint
that each vertex can be moved only once. Repeating the
whole process iteratively until no further improvement is ob-
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tained, we find a final value of the modularity which can
improve on that derived from the spectral method alone by
tens of percent in some cases and smaller but still significant
amounts in other cases. Although the absolute gains in
modularity are not always large, we find that this refinement
step is very much worth the effort it entails, raising the typi-
cal level of performance of our methods from the merely
good to the excellent, when compared with other algorithms.
Specific examples are given in �32�.

It is certainly possible that other refinement strategies
might also give good results. For instance, the “extremal
optimization” method explored by Duch and Arenas �40� for
optimizing modularity could be employed as a refinement
method by using the output of our spectral division as its
starting point, rather than the random configuration used as a
starting point by Duch and Arenas.

VI. DIVIDING NETWORKS INTO MORE
THAN TWO COMMUNITIES

So far we have discussed primarily methods for dividing
networks into two communities. Many of the networks we
are concerned with, however, have more than two communi-
ties. How can we generalize our methods to this case? The
simplest approach is repeated division into two. That is, we
use one of the methods described above to divide our net-
work in two and then divide those parts in two again and so
forth. This approach was described briefly in Ref. �32�.

It is important to appreciate that upon further subdividing
a community within a network into two parts, the additional
contribution 
Q to the modularity made by this subdivision
is not given correctly if we apply the algorithms of Sec. IV to
that community alone. That is, we cannot simply write down
the modularity matrix for the community in question consid-
ered as a separate graph in its own right and examine the
leading eigenvector or eigenvectors. Instead we proceed as
follows. Let us denote the set of vertices in the community to
be divided by G and let nG be the number of vertices within
this community. Now let S be an nG�c index matrix denot-
ing the subdivision of the community into c subcommunities
such that

Sij = �1 if vertex i belongs to subcommunity j ,

0 otherwise.
�

�49�

Then, following Eq. �33�, 
Q is the difference between the
modularities of the network before and after subdivision of
the community thus:


Q = �
i,j�G

�
k=1

c

BijSikSjk − �
i,j�G

Bij

= �
k=1

c

�
i,j�G


Bij − �ij �
l�G

Bil�SikSjk

= Tr�STB�G�S� , �50�

where B�G� is an nG�nG generalized modularity matrix with
elements indexed by the vertex labels i , j of the vertices
within group G and having values

Bij
�G� = Bij − �ij �

l�G

Bil, �51�

with Bij defined by Eq. �27�.
Equation �50� has the same form as our previous expres-

sion, Eq. �33�, for the modularity of the full network, and,
following the same argument as for Eqs. �35�–�38�, we can
then show that optimization of the additional modularity
contribution from subdivision of a community can also be
expressed as a vector partitioning problem, just as before. We
can approximate this vector partitioning problem using only
the leading eigenvector as in Sec. IV A or using more than
one vector as in Sec. IV B. The resulting divisions can also
be optimized using a “refinement” stage as in Sec. V A, to
find the best possible modularity at each step.

Using this method we can repeatedly subdivide commu-
nities to partition networks into smaller and smaller groups
of vertices and in principle this process could continue until
the network is reduced to n communities containing only a
single vertex each. Normally, however, we stop before this
point is reached because there is no point in subdividing a
community any further if no subdivision exists that will in-
crease the modularity of the network as a whole. The appro-
priate strategy is to calculate explicitly the modularity con-
tribution 
Q at each step in the subdivision of a network and
to decline to subdivide any community for which the value
of 
Q is not positive. Communities with the property of
having no subdivision that gives a positive contribution to
the modularity of the network as a whole we call indivisible;
the strategy described here is equivalent to subdividing com-
munities repeatedly until every remaining community is
indivisible.

This strategy appears to work very well in practice. It is,
however, not perfect �a conclusion we could draw under any
circumstances from the fact that it runs in polynomial time—
see above�. In particular, it is certain that repeated subdivi-
sion of a network into two parts will in some cases fail to
find the optimal modularity configuration. Consider, for ex-
ample, the �rather trivial� network shown in Fig. 5, which
consists of eight vertices connected together in a line. By
exhaustive enumeration we can show that, among possible
divisions of this network into only two parts, the division

(b)

(a)

FIG. 5. Division by the method of optimal modularity of a
simple network consisting of eight vertices in a line. �a� The opti-
mal division into just two parts separates the network symmetrically
into two groups of four vertices each. �b� The optimal division into
any number of parts divides the network into three groups as shown
here.
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indicated in Fig. 5�a�, right down the middle of the line, is
the one that gives the highest modularity. The optimum
modularity over divisions into any number of parts, however,
is achieved for the three-way division shown in Fig. 5�b�. It
is clear that if we first split the network as shown in Fig. 5�a�,
no subsequent subdivision of the network can ever find the
configuration of Fig. 5�b�, and hence our algorithm will fail
in this case to find the global optimum. Nonetheless, the
algorithm does appear to find divisions that are close to
optimal in most cases we have investigated.

Repeated subdivision is the approach we have taken to
multicommunity divisions in our own work, but it is not the
only possible approach. In some respects a more satisfying
approach would be to work directly from the expression �37�
for the modularity of the complete network with a multicom-
munity division. Unfortunately, maximizing �37� requires
us to perform a vector partitioning into more than two
groups, a problem about whose solution rather little is
known. Some general observations are, however, worth mak-
ing. First, we note that the community vectors Rk in the
optimal solution of a vector partitioning problem always
have directions more than 90° apart. To demonstrate this, we
note that the change in the contribution to Eq. �37� if we
amalgamate two communities into one is

�R1 + R2�2 − ��R1�2 + �R2�2� = 2R1 · R2, �52�

which is positive if the directions of R1 and R2 are less than
90° apart. Thus we can always increase the modularity by
amalgamating a pair of communities unless their vectors are
more than 90° apart.

But the maximum number of directions more than 90°
apart that can exist in a p-dimensional space is p+1, which
means that p+1 is also the maximum number of communi-
ties we can find by optimizing a p-dimensional spectral ap-
proximation to the modularity. Thus, if we use only a single
eigenvector, we will find at most two groups; if we use two,
we will find at most three groups, and so forth. So the choice
of how many eigenvectors p to work with is determined to
some extent by the network: if the overall optimum modu-
larity is for a division into c groups, we will certainly fail to
find that optimum if we use less than c−1 eigenvectors.

Second, we note that while true multiway vector partition-
ing may present problems, simple heuristics that group the
vertex vectors together can still produce good results. For
instance, White and Smyth �56� have applied the standard
technique of k-means clustering based on group centroids to
a different but related optimization problem and have found
good results. It is possible this approach would work for our
problem also if applied to the centroids of the end points of
the vertex vectors. It is also possible that an intrinsically
vector-based variant of k-means clustering could be created
to tackle the vector partitioning problem directly, although
we are not aware of such an algorithm in the current vector
partitioning literature.

VII. NEGATIVE EIGENVALUES AND BIPARTITE
STRUCTURE

It is clear from the developments of the previous sections
that there is useful information about the structure of a

network stored in the eigenvectors corresponding to the most
positive eigenvalues of the modularity matrix. It is natural to
ask whether there is also useful information in the eigenvec-
tors corresponding to the negative eigenvalues, and indeed it
turns out that there is: the negative eigenvalues and their
eigenvectors contain information about a nontrivial type of
“anticommunity structure” that is of substantial interest in
some instances.

Consider again the case in which we divide our
network into just two groups and look once more at Eq. �29�,
which gives the modularity in this case. Suppose now that
instead of maximizing the terms involving the most positive
eigenvalues, we maximize the terms involving the most
negative ones. As we can easily see from the equation, this
is equivalent to minimizing rather than maximizing the
modularity.

What effect will this have on the divisions of the network
that we find? Large negative values of the modularity corre-
spond to divisions in which the number of edges within
groups is smaller than expected on the basis of chance and
the number of edges between groups correspondingly bigger.
Figure 6 shows a sketch of a network having this property.
Such networks are said to be bipartite if there are no edges at
all within groups or approximately bipartite if there are a few
within-group edges as in the figure. Bipartite or approxi-
mately bipartite graphs have attracted some attention in the
recent literature. For instance, Kleinberg �79� has suggested
that small bipartite subgraphs in the web graph may be a
signature of so-called hub-authority structure within web
communities, while Holme et al. �80� and Estrada and
Rodríguez-Velázquez �81� have independently devised mea-
sures of bipartitivity and used them to analyze a variety of
real-world networks.

The arguments above suggest that we should be able to
detect bipartite or approximately bipartite structure in net-
works by looking for divisions of the vertices that minimize
modularity. In the simplest approximation, we can do this by
focusing once more on just a single term in Eq. �29�, that
corresponding to the most negative eigenvalue �n, and maxi-
mizing the coefficient of this eigenvalue by choosing si=−1
for vertices having a negative element in the corresponding
eigenvector and si= +1 for the others. In other words, we can
achieve an approximation to the minimum modularity divi-
sion of the network by dividing vertices according to the

FIG. 6. �Color online� A small example of an approximately
bipartite network. The network is composed of two groups of ver-
tices, and most edges run between vertices in different groups.
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signs of the elements in the eigenvector un and this division
should correspond roughly to the most nearly bipartite
division. We can also append a “refinement” step to the
calculation, similar to that described in Sec. V A, in which,
starting from the division given by the eigenvector, we move
single vertices between groups in an effort to minimize the
modularity further.

As an example of this type of calculation, consider Fig. 7,
which shows a network representing juxtapositions of words
in a corpus of English text, in this case the novel David
Copperfield by Charles Dickens. To construct this network,
we have taken the 60 most commonly occurring nouns in the
novel and the 60 most commonly occurring adjectives. �The
limit on the number of words is imposed solely to permit a
clear visualization; there is no reason in principle why the
analysis could not be extended to a much larger network.�
The vertices in the network represent words and an edge
connects any two words that appear adjacent to one another
at any point in the book. Eight of the words never appear
adjacent to any of the others and are excluded from the
network, leaving a total of 112 vertices.

Typically adjectives occur next to nouns in English. It is
possible for adjectives to occur next to other adjectives �“the
big green bus”� or for nouns to occur next to other nouns
�“the big tour bus”�, but these juxtapositions are less com-
mon. Thus we would expect our network to be approxi-
mately bipartite in the sense described above: edges should
run primarily between vertices representing different types of

words, with fewer edges between vertices of the same type.
One would be hard pressed to tell this from Fig. 7�a�, how-
ever: the standard layout algorithm used to draw the network
completely fails to reveal the structure present. Figure 7�b�
shows what happens when we divide the vertices by mini-
mizing the modularity using the method described above—a
first division according to the elements of the eigenvector
with the most negative eigenvalue, followed by a refinement
stage to reduce the modularity still further. It is now clear
that the network is in fact nearly bipartite and the two groups
found by the algorithm correspond closely to the known
groups of adjectives and nouns, as indicated by the shapes of
the vertices. Eighty-three percent of the words are classified
correctly by this simple calculation.

Divisions with large negative modularity are—like those
with large positive modularity—not limited to having only
two groups. If we are interested purely in minimizing the
modularity, we can in principle use as many groups as we
like to achieve that goal. A division with k groups is called
k-partite if edges run only between groups and approxi-
mately k-partite if there are a few within-group edges. One
might imagine that one could find k-partite structure in a
network just by looking for divisions that minimize the num-
ber of within-group edges, but brief reflection persuades us
that the optimum solution to this search problem is always to
put each vertex in a group on its own, which automatically
means that all edges lie between groups and none within
groups. As with the ordinary community structure problem,
the way to avoid this trivial solution is to concentrate not on
the total number of edges within groups but on the difference
between this number and the expected number of such edges.
Thus, once again, we are led naturally to the consideration of
modularity as a measure of the best way to divide a network.

One way to minimize modularity over divisions into an
arbitrary number of groups is to proceed by analogy with our
earlier calculations of community structure and repeatedly
divide the network in two using the single-eigenvector
method above. Just as before, Eq. �50� gives the additional
change 
Q in the modularity upon subdivision of a group in
a network and the division process ends when the algorithm
fails to find any subdivision with 
Q�0. Alternatively, one
can derive the analog of Eq. �37� and thereby map the mini-
mization of the modularity onto a vector partitioning prob-
lem. The appropriate definition of the vertex vectors turns
out to be

�ri� j = 
	 − �n+1−jUi,n+1−j , �53�

where 	 is a constant chosen sufficiently large as to make
	−� j �0 for all terms in the sum that we keep. Then the
modularity is given by

Q = n	 − �
k=1

c

�Rk�2, �54�

with the community vectors Rk defined according to Eq.
�38�.

(a)

(b)

FIG. 7. �Color online� �a� The network of commonly occurring
English adjectives �circles� and nouns �squares� described in the
text. �b� The same network redrawn with the nodes grouped so as to
minimize the modularity of the grouping. The network is now re-
vealed to be approximately bipartite, with one group consisting
almost entirely of adjectives and the other of nouns.
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VIII. OTHER USES OF THE MODULARITY MATRIX

One of the striking properties of the Laplacian matrix is
that, as described in Sec. II, it arises repeatedly in various
different areas of graph theory. It is natural to ask whether
the modularity matrix also crops up in other areas. In this
section we describe briefly two other situations in which the
modularity matrix appears, although neither has been viewed
in terms of this matrix in the past, as far as we are aware.

A. Network correlations

For our first example, suppose we have a quantity xi de-
fined on the vertices i=1, . . . ,n of a network, such as degrees
of vertices, ages of people in a social network, numbers of
hits on web pages, and so forth. And let x be the
n-component vector whose elements are the xi. Then
consider the quantity

r =
1

2m
xTBx , �55�

where here we will take the same definition �23� for our null
model that we have been using throughout. Observing that
�ijAij =�iki=2m, we can rewrite r as

r =
1

2m
�
ij

Aij −

kikj

2m
�xixj =

�
ij

Aijxixj

�
ij

Aij

− ��
ij

Aijxi

�
ij

Aij �
2

.

�56�

Note that the ratios appearing in the second line are simply
averages over all edges in the network, and hence r has the
form �xixj�− �xi��xj� of a correlation function measuring the
correlation of the values xi over all pairs of vertices joined by
an edge in the network.

Correlation functions of exactly this type have been con-
sidered previously as measures of so-called “assortative mix-
ing,” the tendency for adjacent vertices in networks to have
similar properties �54,69�. For example, if the quantity xi is
just the degree ki of a vertex, then r is the covariance of the
degrees of adjacent vertices, which takes positive values if
vertices tend to have similar degrees to their neighbors, high-
degree vertices linking to other high-degree vertices and low
to low, and negative values if high-degree links to low.

Equation �55� is not just a curiosity, but provides some
insight concerning assortativity. If we expand x in terms of
the eigenvectors ui of the modularity matrix, as we did for
the modularity itself in Eq. �29�, we get

r =
1

2m
�

i

ci
2�i, �57�

where �i is again the ith largest eigenvalue of B and ci
=ui

Tx. Thus r will have a large positive value if x has a large
component in the direction of one or more of the most posi-
tive eigenvectors of the modularity matrix and similarly for
large negative values. Now we recall that the leading eigen-
vectors of the modularity matrix also define the communities
in the network and we see that there is a close relation be-

tween assortativity and community structure: networks will
be assortative according to some property x if the values of
that property divide along the same lines as the communities
in the network. Thus, for instance, a network will be assor-
tative by degree if the degrees of the vertices are partitioned
such that the high-degree vertices fall in one community and
the low-degree vertices in another.

This lends additional force to the discussion given in the
Introduction, where we mentioned that different communi-
ties in networks are often found to have different average
properties such as degree. In fact, as we now see, this is
probably the case for any property that displays significant
assortative mixing, which includes an enormous variety of
quantities measured in networks of all types. Thus, it is not
merely an observation that different communities have dif-
ferent average properties—it is an expected behavior in a
network that has both community structure and assortativity.

B. Community centrality

For our second example of other uses of the modularity
matrix, we consider centrality measures, one of the abiding
interests of the network analysis community for many de-
cades. In Sec. IV A we argued that the magnitudes of the
elements of the leading eigenvector of the modularity matrix
give a measure of the “strength” with which vertices belong
to their assigned communities. Thus these magnitudes define
a kind of centrality index that quantifies how central vertices
are in communities. Focusing on just a single eigenvector of
the modularity matrix, however, is limiting. As we have seen,
all the eigenvectors contain useful information about com-
munity structure. It is useful to ask what the appropriate
measure is of strength of community membership when the
information in all eigenvectors is taken into account. Given
Eq. �37�, the obvious candidate seems to be the projection of
the vertex vector ri onto the community vector Rk of the
community to which vertex i belongs. Unfortunately, this
projection depends on the arbitrary parameter 	, which we
introduced in Eq. �35� to get around problems caused by the
negative eigenvalues of the modularity matrix. This in turn
threatens to introduce arbitrariness into our centrality mea-
sure, which we would prefer to avoid. So for the purposes of
defining a centrality index we propose a slightly different
formulation of the modularity, which is less appropriate for
the optimization calculations that are the main topic of this
paper, but more satisfactory for present purposes, as we will
see.

Suppose that there are p positive eigenvalues of the
modularity matrix and q negative ones. We define two new
sets of vertex vectors �xi� and �yi�, of dimension p and q,
thus:

�xi� j = 
� jUij , �58�

�yi� j = 
− �n+1−jUi,n+1−j . �59�

�Note that p+q�n since there is always at least one eigen-
value with value zero.� In terms of these vectors the
modularity, Eq. �33�, can be written as
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Q = �
k=1

c

�
j=1

p 
�
i=1

n


� jUijSik�2

− �
k=1

c

�
j=1

q 
�
i=1

n


− �n+1−jUi,n+1−jSik�2

= �
k=1

c

�
j=1

p


 �
i�Gk

�xi� j�2
− �

k=1

c

�
j=1

q


 �
i�Gk

�yi� j�2

= �
k=1

c

�Xk�2 − �
k=1

c

�Yk�2, �60�

where Gk is once again the set of vertices in community k
and the community vectors Xk and Yk are defined by

Xk = �
i�Gk

xi, Yk = �
i�Gk

yi. �61�

This reformulation avoids the use of the arbitrary constant 	,
thereby making the vertex vectors dependent only on the
network structure and not on the way in which we choose to
represent it.

Equation �60� separates out the positive and negative con-
tributions to the modularity, the positive contributions com-
ing from vertices that have large corresponding elements in
the eigenvectors with positive eigenvalues, and conversely
for the negative contributions. The two contributions corre-
spond respectively to the traditional community structure of
Secs. III and IV and to the bipartite or k-partite structure
discussed in Sec. VII. It is important to notice that while
obviously the overall modularity can only be either positive
or negative, it is entirely possible for individual vertices to
simultaneously make both large positive and large negative
contributions to that modularity. Upon reflection, this is
clearly reasonable: there is no reason why a single vertex
cannot have more connections than expected within its own
community and more connections than expected to other
communities. In a sense, Eq. �60� may be a more fundamen-
tal representation of the modularity than Eq. �37� because it
makes this separation transparent, even if it is in practice less
suitable as a basis for modularity optimization.

We can now define precisely the quantity that plays the
role previously played by the elements of the leading eigen-
vector in the single-eigenvector approximation: it is the pro-
jection of xi onto the relevant community vector Xk, as we
can see by writing the magnitude �Xk� in Eq. �60� as

�Xk� =
Xk

TXk

�Xk�
=

Xk
T

�Xk�
�

i�Gk

xi = �
i�Gk

X̂k
Txi, �62�

where X̂k is the unit vector in the direction of Xk. Thus each
vertex vector makes a contribution to �Xk� equal to its pro-
jection onto Xk. In the approximation where we ignore all
but the leading eigenvector, this projection reduces to the
�magnitude of� the appropriate element of that eigenvector,
as in Sec. IV A.

The projection specifies how central vertex i is in its own
community in the traditional sense of having many connec-
tions within that community. If this quantity is large, then we

will lose a large positive contribution to the modularity if we
move the vertex to another community, which is to say that
the vertex is a strong member of its current community.

But there is also a second measure for each vertex, the
projection of yi onto Yk. This projection corresponds to a
more unusual sort of centrality which is high if vertex i has
many connections to others outside its community. This
“outsider” centrality measure could also be useful in certain
circumstances to identify individuals with strong external
connections.

These two projections, however, do not take precisely the
form that we expect of a centrality measure because they are
functions not only of the vertex itself �via xi or yi� but also of
the community in which it is placed �via Xk or Yk�. Instead,
therefore, let us consider the projection in the form
�xi�cos �ik, where �ik is the angle between xi and Xk. The two
parts of this expression are both of interest. The first, the
magnitude �xi�, measures how large a positive contribution
vertex i can potentially make to the modularity. The vertex
only actually makes a contribution this large if the vertex
vector is aligned with the community vector—i.e., if the ver-
tex is, in a sense, “in the middle” of the community to which
it belongs. Even a vertex for which �xi� is large may in prac-
tice make a small positive contribution to the modularity if xi
is almost perpendicular to Xk—i.e., if the vertex is “on the
edge” of the community.

The second part of the projection, the cos �ik, is a measure
precisely of the vertex’s position in the middle or on the edge
of its community. In the parlance of social network analysis,
the vertex is either in the core of its community �cos �ik near
1� or in the periphery �cos �ik nearer 0�. The cosine is a
property both of the vertex and of the community.

Let us focus here on the vector magnitudes and define two
centrality measures for vertices in a network equal to the
magnitudes of the vertex vectors xi and yi. �If we prefer, we
could use �xi�2 instead, which is slightly easier to calculate.
If, as is sometimes the case with centrality measures, we only
care about relative rankings of vertices, then the two are
equivalent.� These centralities are now properties of the ver-
tices alone and are independent of the way the network is
divided into communities. We notice, however, that �xi� and
�yi� are not independent since

�xi�2 − �yi�2 = �
j=1

p

�
� jUij�2 − �
j=1

q

�
− �n+1−jUi,n+1−j�2

= �
j=1

n

Uij� jUji
T = Bii. �63�

Almost all networks considered in the literature are simple
graphs, meaning, among other things, that they have no self-
edges �edges that connect vertices to themselves� and hence
Aii=0 for all i. If the expected number of self-edges, Pii, is
also zero �as seems sensible�, then Bii=0 and we have
�xi�= �yi� for all i. Thus there is actually only one centrality
for simple graphs, not two.
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In fact, the choice �23� for Pij that we and other authors
have mostly used does allow self-edges �and is in this sense
slightly unrealistic—see �57��, but Pii=ki

2 /2m is typically
small for most vertices if m is large �and indeed vanishes as
m→� if degrees are bounded�, and hence it is still true to a
good approximation that �xi���yi� and there is only one
centrality.

In other words, we come to the nontrivial conclusion that
the vertices with the greatest capacity for making positive
contributions to the modularity also have the greatest capac-
ity for making negative contributions. The fundamental
meaning of this centrality measure is thus that there are cer-
tain vertices that, as a consequence of their situation within
the network, have the power to make substantial contribu-
tions, either positive or negative, to the overall modularity of
the network. For this reason, we call this centrality measure
community centrality. We define it to be equal to the vector
magnitude �xi�.

An alternative way to view the community centrality is to
consider how a vertex i is situated among the other vertices
in its immediate vicinity—its neighborhood in the network.
If we were to artificially construct a community from the
vertices of this neighborhood, then that community would
presumably have a community vector Xk with direction close
to xi, and hence the magnitude �xi� would be a good measure
of the actual strength with which vertex i belongs the com-
munity. Thus vertices with high community centrality are
ones that play a central role in their local neighborhood,
regardless of where the official community boundaries may
lie. Conversely, even when considered as the “center of its

world” in this way, vertex i can never play a central role in
its neighborhood in this sense if �xi� is small.

As an example, consider Fig. 8, which shows results for
community centrality for a network of coauthorships
between scientists, scientists in this case who are themselves
publishing on the topic of networks. The network is similar
to the one presented in Ref. �18� but is based on more recent
data, including publications up until early 2006 �82�. The
network has a total of 1589 scientists in it, from a broad
variety of fields, but only the 379 falling in the largest
connected component are shown in the figure. The diameters
of the vertices in the figure are proportional to their commu-
nity centrality �actually to �xi�2—see above�, and the ten ver-
tices having the highest centralities are highlighted. A couple
of remarks are worth making about the results. Without nam-
ing specific names, we observe that all of the highlighted
authors are group leaders or senior researchers of groups
working in this area. Thus community centrality appears to
live up to its name in this admittedly anecdotal example: it
highlights those vertices that are central in their local com-
munities. Second, while the centrality is correlated with de-
gree �r2=0.59—see the inset�, the two are not perfectly cor-
related and in particular some vertices have quite high
centrality while having relatively low degree. This empha-
sizes the point that high centrality is an indicator of individu-
als who have more connections than expected within their
neighborhood �and hence potentially make a large contribu-
tion to the modularity�, rather than simply having a lot of
connections.

IX. CONCLUSIONS

In this paper, we have studied the problem of detecting
community structure in networks. There is already a substan-
tial body of theory supporting the view that community
structure can be accurately quantified using the benefit func-
tion known as modularity and hence that communities can be
detected by searching possible divisions of a network for
ones that possess high modularity. Here we have demon-
strated that the modularity can be succinctly expressed in
terms of the eigenvalues and eigenvectors of a matrix we call
the modularity matrix, which is a characteristic property of
the network and is itself independent of any division of the
network into communities. Using this expression we have
derived a series of further results including several new and
competitive algorithms for identifying communities, a
method for detecting bipartite or k-partite structure in net-
works, and a new community centrality measure that identi-
fies vertices that play a central role in the communities to
which they belong.

We have demonstrated a variety of applications of our
methods to real-world networks representing social, techno-
logical, and information networks. These, however, are in-
tended only as illustrations of the potential of these methods.
We hope that readers will feel encouraged to apply these or
similar methods to other networks of scientific interest and
we look forward to seeing the results.

FIG. 8. �Color online� A network of coauthorships between 379
scientists whose research centers on the properties of networks of
one kind or another. Vertex diameters indicate the community cen-
trality, and the ten vertices with highest centralities are highlighted.
For those readers curious about the identities of the vertices, an
annotated version of this figure, names and all, can be found in Ref.
�84� Inset: a scatter plot of community centrality against vertex
degrees. Like most centrality measures, this one is correlated with
degree, though only moderately strongly.
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