Topic
Connective tissue stroma
About:结缔组织基质是一个研究课题。betway亚洲在the lifetime, 546 publications have been published within this topic receiving 14778 citations.
Papers published on a yearly basis
Papers
[...]
TL;DR:Most studies have concluded that the presence of synovitis in OA is associated with more severe pain and joint dysfunction, and may be predictive of faster rates of cartilage loss in certain patient populations.
Abstract:Research into the pathophysiology of osteoarthritis (OA) has focused on cartilage and peri-articular bone, but there is increasing recognition that OA affects all of the joint tissues, including the synovium (SM). Under normal physiological conditions the synovial lining consists of a thin layer of cells with phenotypic features of macrophages and fibroblasts. These cells and the underlying vascularized connective tissue stroma form a complex structure that is an important source of synovial fluid (SF) components that are essential for normal cartilage and joint function. The histological changes observed in the SM in OA generally include features indicative of an inflammatory "synovitis"; specifically they encompass a range of abnormalities, such as synovial lining hyperplasia, infiltration of macrophages and lymphocytes, neoangiogenesis and fibrosis. The pattern of synovial reaction varies with disease duration and associated metabolic and structural changes in other joint tissues. Imaging modalities including magnetic resonance (MRI) and ultrasound (US) have proved useful in detecting and quantifying synovial abnormalities, but individual studies have varied in their methods of evaluation. Despite these differences, most studies have concluded that the presence of synovitis in OA is associated with more severe pain and joint dysfunction. In addition, synovitis may be predictive of faster rates of cartilage loss in certain patient populations. Recent studies have provided insights into the pathogenic mechanisms underlying the development of synovitis in OA. Available evidence suggests that the inflammatory process involves engagement of Toll-like receptors and activation of the complement cascade by degradation products of extracellular matrices of cartilage and other joint tissues. The ensuing synovial reaction can lead to synthesis and release of a wide variety of cytokines and chemokines. Some of these inflammatory mediators are detected in joint tissues and SF in OA and have catabolic effects on chondrocytes. These inflammatory mediators represent potential targets for therapeutic interventions designed to reduce both symptoms and structural joint damage in OA. This article is part of a Special Issue entitled "Osteoarthritis".
703citations
Journal Article
•
[...]
TL;DR:Immunohistochemical and biochemical studies of several human tumors show correlations between invasive potential and type IV collagenase activity.
Abstract:The invasion and metastasis of cancer cells is a complex multistep process involving attachment of tumor cells to the basement membrane, proteolysis of the local connective tissue stroma, and migration through the proteolyzed stroma. Recent evidence implicates metalloproteinases such as type IV collagenase and transin/stromelysin in the proteolytic aspects of this process. Type IV collagenase activity is modulated by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). Immunohistochemical and biochemical studies of several human tumors show correlations between invasive potential and type IV collagenase activity.
389citations
[...]
TL;DR:Evidence is provided for the participation of recipient-derived lymphatic progenitor cells in renal transplants of individuals with gender-mismatched transplants who had transplant rejection and high rates of overall lymphatic endothelial proliferation as well as massive chronic inflammation.
Abstract:De novo lymphangiogenesis influences the course of different human diseases as diverse as chronic renal transplant rejection and tumor metastasis. The cellular mechanisms of lymphangiogenesis in human diseases are currently unknown, and could involve division of local preexisting endothelial cells or incorporation of circulating progenitors. We analyzed renal tissues of individuals with gender-mismatched transplants who had transplant rejection and high rates of overall lymphatic endothelial proliferation as well as massive chronic inflammation. Donor-derived cells were detected by in situ hybridization of the Y chromosome. We compared these tissues with biopsies of essentially normal skin and intestine, and two rare carcinomas with low rates of lymphatic endothelial proliferation that were derived from individuals with gender-mismatched bone marrow transplants. Here, we provide evidence for the participation of recipient-derived lymphatic progenitor cells in renal transplants. In contrast, lymphatic vessels of normal tissues and those around post-transplant carcinomas did not incorporate donor-derived progenitors. This indicates a stepwise mechanism of inflammation-associated de novo lymphangiogenesis, implying that potential lymphatic progenitor cells derive from the circulation, transmigrate through the connective tissue stroma, presumably in the form of macrophages, and finally incorporate into the growing lymphatic vessel.
352citations
Journal Article
•
[...]
TL;DR:It is reported that VPF/VEGF mRNA and protein are expressed by human ovarian granulosa and theca cells late in follicle development and, subsequent to ovulation, by granulosand theca lutein cells, ideally positioned to provoke the increased permeability of thecal blood vessels that occurs shortly before ovulation.
Abstract:血管渗透因子/血管内皮growth factor (VPF/VEGF) is a cytokine that is overexpressed in many tumors, in healing wounds, and in rheumatoid arthritis. VPF/VEGF is thought to induce angiogenesis and accompanying connective tissue stroma in two ways: 1), by increasing microvascular permeability, thereby modifying the extracellular matrix and 2), as an endothelial cell mitogen. VPF/VEGF has been reported in animal corpora lutea and we investigated the possibility that it might be present in human ovaries and have a role in corpus luteum formation. We here report that VPF/VEGF mRNA and protein are expressed by human ovarian granulosa and theca cells late in follicle development and, subsequent to ovulation, by granulosa and theca lutein cells. Therefore, VPF/VEGF is ideally positioned to provoke the increased permeability of thecal blood vessels that occurs shortly before ovulation. VPF/VEGF likely also contributes to the angiogenesis and connective tissue stroma generation that accompany corpus luteum/corpus albicans formation. Finally, VPF/VEGF was overexpressed in the hyperthecotic ovarian stroma of Stein-Leventhal syndrome in which it may also have a pathophysiological role.
348citations
[...]
TL;DR:The present results suggest that tumor-derived PDGF-BB is a potent mediator of connective tissue stroma formation and may form a solid support for newly formed blood vessels and, thereby, facilitate the formation of a functional vascular system in the tumor.
Abstract:Human WM9 melanoma cells, previously shown to be devoid of PDGF expression, were stably transfected with a PDGF-B cDNA under the transcriptional control of a cytomegalovirus promoter. Northern blot analysis revealed high expression of an mRNA of the expected size in the PDGF-B-transfected cells. Synthesis and secretion of PDGF-BB was confirmed by immunoprecipitation. Furthermore, conditioned medium from PDGF-B-transfected cells contained a mitogenic activity for fibroblasts. For analysis of tumor growth in vivo, cells of each type were injected subcutaneously into BALB/c nu/nu mice. Tumors from mice injected with WM9 cells transfected with the vector only contained large necrotic areas; only scant blood vessels with narrow lumina were observed. No connective tissue was present. In the tumors from PDGF-B-transfected WM9 cells, nests of tumor were divided by connective tissue septa. An abundance of blood vessels was observed in the connective tissue septa and within the tumor cell nests. There was a complete absence of necrosis in these tumors. The present results suggest that tumor-derived PDGF-BB is a potent mediator of connective tissue stroma formation. The connective tissue framework that is generated in response to PDGF-BB may form a solid support for newly formed blood vessels and, thereby, facilitate the formation of a functional vascular system in the tumor.
234citations