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THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS

The CMS experiment at the CERN LHC

CMS Collaboration

ABSTRACT: The Compact Muon Solenoid (CMS) detector is described. The detector operates at
the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-
lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosi-
ties up to 10**cm2s~! (10?7 cm~2s~!). At the core of the CMS detector sits a high-magnetic-
field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a
lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling
hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon
detectors covering most of the 47 solid angle. Forward sampling calorimeters extend the pseudo-
rapidity coverage to high values (|| < 5) assuring very good hermeticity. The overall dimensions
of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500t.

KEYWORDS: Instrumentation for particle accelerators and storage rings - high energy; Gaseous
detectors; Scintillators, scintillation and light emission processes; Solid state detectors;
Calorimeters; Gamma detectors; Large detector systems for particle and astroparticle physics;
Particle identification methods; Particle tracking detectors; Spectrometers; Analogue electronic
circuits; Control and monitor systems online; Data acquisition circuits; Data acquisition concepts;
Detector control systems; Digital electronic circuits; Digital signal processing; Electronic detector
readout concepts; Front-end electronics for detector readout; Modular electronics; Online farms
and online filtering; Optical detector readout concepts; Trigger concepts and systems; VLSI
circuits; Analysis and statistical methods; Computing; Data processing methods; Data reduction
methods; Pattern recognition, cluster finding, calibration and fitting methods; Software
architectures; Detector alignment and calibration methods; Detector cooling and
thermo-stabilization; Detector design and construction technologies and materials; Detector
grounding; Manufacturing; Overall mechanics design; Special cables; Voltage distributions.
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Chapter 1

Introduction

The Compact Muon Solenoid (CMS) detector is a multi-purpose apparatus due to operate at the
Large Hadron Collider (LHC) at CERN. The LHC is presently being constructed in the already
existing 27-km LEP tunnel in the Geneva region. It will yield head-on collisions of two pro-
ton (ion) beams of 7 TeV (2.75 TeV per nucleon) each, with a design luminosity of 103 cm2s~!
(10?7 cm~2s~1). This paper provides a description of the design and construction of the CMS detec-
tor. CMS is installed about 100 metres underground close to the French village of Cessy, between
Lake Geneva and the Jura mountains.

The prime motivation of the LHC is to elucidate the nature of electroweak symmetry break-
ing for which the Higgs mechanism is presumed to be responsible. The experimental study of the
Higgs mechanism can also shed light on the mathematical consistency of the Standard Model at
energy scales above about 1 TeV. Various alternatives to the Standard Model invoke new symme-
tries, new forces or constituents. Furthermore, there are high hopes for discoveries that could pave
the way toward a unified theory. These discoveries could take the form of supersymmetry or extra
dimensions, the latter often requiring modification of gravity at the TeV scale. Hence there are
many compelling reasons to investigate the TeV energy scale.

The LHC will also provide high-energy heavy-ion beams at energies over 30 times higher
than at the previous accelerators, allowing us to further extend the study of QCD matter under
extreme conditions of temperature, density, and parton momentum fraction (low-x).

Hadron colliders are well suited to the task of exploring new energy domains, and the region
of 1 TeV constituent centre-of-mass energy can be explored if the proton energy and the luminosity
are high enough. The beam energy and the design luminosity of the LHC have been chosen in
order to study physics at the TeV energy scale. A wide range of physics is potentially possible
with the seven-fold increase in energy and a hundred-fold increase in integrated luminosity over
the previous hadron collider experiments. These conditions also require a very careful design of
the detectors.

The total proton-proton cross-section at /s = 14 TeV is expected to be roughly 100 mb. At
design luminosity the general-purpose detectors will therefore observe an event rate of approxi-
mately 10° inelastic events/s. This leads to a number of formidable experimental challenges. The
online event selection process (frigger) must reduce the huge rate to about 100 events/s for storage
and subsequent analysis. The short time between bunch crossings, 25 ns, has major implications
for the design of the read-out and trigger systems.



At the design luminosity, a mean of about 20 inelastic collisions will be superimposed on the
event of interest. This implies that around 1000 charged particles will emerge from the interaction
region every 25 ns. The products of an interaction under study may be confused with those from
other interactions in the same bunch crossing. This problem clearly becomes more severe when
the response time of a detector element and its electronic signal is longer than 25 ns. The effect of
this pile-up can be reduced by using high-granularity detectors with good time resolution, resulting
in low occupancy. This requires a large number of detector channels. The resulting millions of
detector electronic channels require very good synchronization.

The large flux of particles coming from the interaction region leads to high radiation levels,
requiring radiation-hard detectors and front-end electronics.

The detector requirements for CMS to meet the goals of the LHC physics programme can be
summarised as follows:

* Good muon identification and momentum resolution over a wide range of momenta and
angles, good dimuon mass resolution (= 1% at 100 GeV), and the ability to determine un-
ambiguously the charge of muons with p < 1 TeV;

* Good charged-particle momentum resolution and reconstruction efficiency in the inner
tracker. Efficient triggering and offline tagging of 7’s and b-jets, requiring pixel detectors
close to the interaction region;

* Good electromagnetic energy resolution, good diphoton and dielectron mass resolution (=
1% at 100 GeV), wide geometric coverage, n¥ rejection, and efficient photon and lepton
isolation at high luminosities;

* Good missing-transverse-energy and dijet-mass resolution, requiring hadron calorimeters
with a large hermetic geometric coverage and with fine lateral segmentation.

The design of CMS, detailed in the next section, meets these requirements. The main distin-
guishing features of CMS are a high-field solenoid, a full-silicon-based inner tracking system, and
a homogeneous scintillating-crystals-based electromagnetic calorimeter.

The coordinate system adopted by CMS has the origin centered at the nominal collision point
inside the experiment, the y-axis pointing vertically upward, and the x-axis pointing radially inward
toward the center of the LHC. Thus, the z-axis points along the beam direction toward the Jura
mountains from LHC Point 5. The azimuthal angle ¢ is measured from the x-axis in the x-y plane
and the radial coordinate in this plane is denoted by r. The polar angle 6 is measured from the z-
axis. Pseudorapidity is defined as 1 = —Intan(6/2). Thus, the momentum and energy transverse to
the beam direction, denoted by pr and E7, respectively, are computed from the x and y components.
The imbalance of energy measured in the transverse plane is denoted by E‘Tni”.

1.1 General concept

An important aspect driving the detector design and layout is the choice of the magnetic field
configuration for the measurement of the momentum of muons. Large bending power is needed
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Figure 1.1: A perspective view of the CMS detector.

to measure precisely the momentum of high-energy charged particles. This forces a choice of
superconducting technology for the magnets.

The overall layout of CMS [1] is shown in figure 1.1. At the heart of CMS sits a 13-m-
long, 6-m-inner-diameter, 4-T superconducting solenoid providing a large bending power (12 Tm)
before the muon bending angle is measured by the muon system. The return field is large enough
to saturate 1.5 m of iron, allowing 4 muon stations to be integrated to ensure robustness and full
geometric coverage. Each muon station consists of several layers of aluminium drift tubes (DT)
in the barrel region and cathode strip chambers (CSC) in the endcap region, complemented by
resistive plate chambers (RPC).

The bore of the magnet coil is large enough to accommodate the inner tracker and the
calorimetry inside. The tracking volume is given by a cylinder of 5.8-m length and 2.6-m di-
ameter. In order to deal with high track multiplicities, CMS employs 10 layers of silicon microstrip
detectors, which provide the required granularity and precision. In addition, 3 layers of silicon
pixel detectors are placed close to the interaction region to improve the measurement of the impact
parameter of charged-particle tracks, as well as the position of secondary vertices. The expected
muon momentum resolution using only the muon system, using only the inner tracker, and using
both sub-detectors is shown in figure 1.2.

The electromagnetic calorimeter (ECAL) uses lead tungstate (PbWOQO,) crystals with cov-
erage in pseudorapidity up to |n| < 3.0. The scintillation light is detected by silicon avalanche
photodiodes (APDs) in the barrel region and vacuum phototriodes (VPTs) in the endcap region. A
preshower system is installed in front of the endcap ECAL for ¥ rejection. The energy resolution
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Figure 1.2: The muon transverse-momentum resolution as a function of the transverse-momentum
(pr) using the muon system only, the inner tracking only, and both. Left panel: |n| < 0.8, right
panel: 1.2 < |n| < 2.4.

of the ECAL, for incident electrons as measured in a beam test, is shown in figure 1.3; the stochas-
tic (S), noise (N), and constant (C) terms given in the figure are determined by fitting the measured

5~ () (e

The ECAL is surrounded by a brass/scintillator sampling hadron calorimeter (HCAL) with cov-

points to the function

(1.1)

erage up to |n| < 3.0. The scintillation light is converted by wavelength-shifting (WLS) fibres
embedded in the scintillator tiles and channeled to photodetectors via clear fibres. This light is
detected by photodetectors (hybrid photodiodes, or HPDs) that can provide gain and operate in
high axial magnetic fields. This central calorimetry is complemented by a tail-catcher in the bar-
rel region (HO) ensuring that hadronic showers are sampled with nearly 11 hadronic interaction
lengths. Coverage up to a pseudorapidity of 5.0 is provided by an iron/quartz-fibre calorime-
ter. The Cerenkov light emitted in the quartz fibres is detected by photomultipliers. The forward
calorimeters ensure full geometric coverage for the measurement of the transverse energy in the
event. An even higher forward coverage is obtained with additional dedicated calorimeters (CAS-
TOR, ZDC, not shown in figure 1.1) and with the TOTEM [2] tracking detectors. The expected jet
transverse-energy resolution in various pseudorapidity regions is shown in figure 1.4.

The CMS detector is 21.6-m long and has a diameter of 14.6 m. It has a total weight of 12500
t. The ECAL thickness, in radiation lengths, is larger than 25 Xj, while the HCAL thickness, in
interaction lengths, varies in the range 7-11 A; (10~15 A; with the HO included), depending on 7.
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Chapter 2

Superconducting magnet

2.1 Overview

The superconducting magnet for CMS [3-6] has been designed to reach a 4-T field in a free bore
of 6-m diameter and 12.5-m length with a stored energy of 2.6 GJ at full current. The flux is re-
turned through a 10 000-t yoke comprising 5 wheels and 2 endcaps, composed of three disks each
(figure 1.1). The distinctive feature of the 220-t cold mass is the 4-layer winding made from a
stabilised reinforced NbTi conductor. The ratio between stored energy and cold mass is high (11.6
KlJ/kg), causing a large mechanical deformation (0.15%) during energising, well beyond the values
of previous solenoidal detector magnets. The parameters of the CMS magnet are summarised in
table 2.1. The magnet was designed to be assembled and tested in a surface hall (SX5), prior to
being lowered 90 m below ground to its final position in the experimental cavern. After provi-
sional connection to its ancillaries, the CMS Magnet has been fully and successfully tested and
commissioned in SX5 during autumn 2006.

2.2 Main features of the magnet components

2.2.1 Superconducting solenoid

The superconducting solenoid (see an artistic view in figure 2.1 and a picture taken during assembly
in the vertical position in SX5 in figure 2.2) presents three new features with respect to previous
detector magnets:

* Due to the number of ampere-turns required for generating a field of 4 T (41.7 MA-turn), the
winding is composed of 4 layers, instead of the usual 1 (as in the Aleph [7] and Delphi [8]
coils) or maximum 2 layers (as in the ZEUS [9] and BaBar [10] coils);

* The conductor, made from a Rutherford-type cable co-extruded with pure aluminium (the
so-called insert), is mechanically reinforced with an aluminium alloy;

* The dimensions of the solenoid are very large (6.3-m cold bore, 12.5-m length, 220-t mass).

For physics reasons, the radial extent of the coil (AR) had to be kept small, and thus the
CMS coil is in effect a “thin coil” (AR/R ~ 0.1). The hoop strain (€) is then determined by the



Figure 2.1: General artistic view of the 5 modules composing the cold mass inside the cryostat,
with details of the supporting system (vertical, radial and longitudinal tie rods).

magnetic pressure (P = % = 6.4 MPa), the elastic modulus of the material (mainly aluminium
with Y= 80 GPa) and the structural thickness (AR, = 170 mm i.e., about half of the total cold
mass thickness), according to fT{i =Ye, giving € = 1.5 x 1073, This value is high compared to
the strain of previous existing detector magnets. This can be better viewed looking at a more
significant figure of merit, i.e. the E /M ratio directly proportional to the mechanical hoop strain

according to AE,I = %% = %Q; g—g, where ¢ is the mass density. Figure 2.3 shows the values of

E /M as function of stored energy for several detector magnets. The CMS coil is distinguishably
far from other detector magnets when combining stored energy and E /M ratio (i.e. mechanical
deformation). In order to provide the necessary hoop strength, a large fraction of the CMS coil
must have a structural function. To limit the shear stress level inside the winding and prevent
cracking the insulation, especially at the border defined by the winding and the external mandrel,
the structural material cannot be too far from the current-carrying elements (the turns). On the basis
of these considerations, the innovative design of the CMS magnet uses a self-supporting conductor,
by including in it the structural material. The magnetic hoop stress (130 MPa) is shared between
the layers (70%) and the support cylindrical mandrel (30%) rather than being taken by the outer
mandrel only, as was the case in the previous generation of thin detector solenoids. A cross section
of the cold mass is shown in figure 2.4.

The construction of a winding using a reinforced conductor required technological develop-
ments for both the conductor [11] and the winding. In particular, for the winding many problems
had to be faced mainly related to the mandrel construction [12], the winding method [13], and the
module-to-module mechanical coupling. The modular concept of the cold mass had to face the
problem of the module-to-module mechanical connection. These interfaces (figure 2.5) are critical



Table 2.1: Main parameters of the CMS magnet.

General parameters

Magnetic length 12.5m
Cold bore diameter 6.3m
Central magnetic induction 4T
Total Ampere-turns 41.7 MA-turns
Nominal current 19.14 kA
Inductance 142H
Stored energy 2.6GJ
Cold mass
Layout Five modules mechanically and
electrically coupled
Radial thickness of cold mass 312 mm
Radiation thickness of cold mass 39X,
Weight of cold mass 220t
Maximum induction on conductor 46T
Temperature margin wrt operating temperature | 1.8 K
Stored energy/unit cold mass 11.6kJ/kg
Iron yoke
Outer diameter of the iron flats 14m
Length of barrel 13m
Thickness of the iron layers in barrel 300, 630 and 630 mm
Mass of iron in barrel 6000t
Thickness of iron disks in endcaps 250, 600 and 600 mm
Mass of iron in each endcap 2000t
Total mass of iron in return yoke 10 000t

because they have to transmit the large magnetic axial force corresponding to 14 700 t, without
allowing local displacements due to possible gaps. These displacements can be partially converted
into heat, causing a premature quench. A construction method which involved the machining of
the upper surface of the modules and a local resin impregnation during the mechanical mounting
allowed us to get an excellent mechanical coupling between the modules.



Figure 2.2: The cold mass mounted vertically before integration with thermal shields and insertion

in the vacuum chamber.
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Figure 2.4: Cross section of the cold mass with the details of the 4-layer winding with reinforced
conductor.

4 layers winding -
N

Figure 2.5: Detail of the interface region between 2 modules. In order to guarantee mechanical
continuity, false turns are involved. The modules are connected through bolts and pins fixed through
the outer mandrels.
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Figure 2.6: A view of the yoke at an early stage of magnet assembly at SX5. The central barrel
supports the vacuum chamber of the superconducting coil. At the rear, one of the closing end cap
disks is visible.

2.2.2 Yoke

The yoke (figure 2.6) is composed of 11 large elements, 6 endcap disks, and 5 barrel wheels,
whose weight goes from 400t for the lightest up to 1920t for the central wheel, which includes
the coil and its cryostat. The easy relative movement of these elements facilitates the assembly
of the sub-detectors. To displace each element a combination of heavy-duty air pads plus grease
pads has been chosen. This choice makes the system insensitive to metallic dust on the floor and
allows transverse displacements. Two kinds of heavy-duty high-pressure air pads with a capacity
of either 250 t (40 bars) or 385 t (60 bars) are used. This is not favourable for the final approach
when closing the detector, especially for the YE1 endcap that is protruding into the vacuum tank.
A special solution has been adopted: for the last 100 mm of approach, flat grease-pads (working
pressure 100 bar) have been developed in order to facilitate the final closing of the detector. Once
they touch the axially-installed z-stops, each element is pre-stressed with 100t to the adjacent
element. This assures good contact before switching on the magnet. In the cavern the elements
will be moved on the 1.23% inclined floor by a strand jacking hydraulic system that ensures safe
operation for uphill pulling as well as for downhill pushing by keeping a retaining force. The
maximum movements possible in the cavern are of the order of 11 meters; this will take one hour.

To easily align the yoke elements, a precise reference system of about 70 points was installed
in the surface assembly hall. The origin of the reference system is the geometrical center of the
coil. The points were made after loading the coil cryostat with the inner detectors, the hadronic
barrel in particular which weights 1000t. A mark on the floor was made showing the position of
each foot in order to pre-position each element within a + 5 mm tolerance. Finally, all the elements
were aligned with an accuracy of 2 mm with respect to the ideal axis of the coil.

—11 =
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Figure 2.7: The electrical scheme of the magnet with the protection circuit. One of the main
components of the protection is the dump resistor, made of three elements.

2.2.3 Electrical scheme

The CMS solenoid can be represented as a 14 H inductance mutually coupled with its external
mandrel. This inductive coupling allows for the so-called quench back effect, as the eddy currents,
induced in the external mandrel at the trigger of a current fast discharge, heat up the whole coil
above the superconducting critical temperature. This is the fundamental basis of the protection
system, which, in case of a superconducting to resistive transition of the coil, aims at keeping
the lowest possible thermal gradients and temperature increase in the superconducting windings,
and prevents the occurrence of local overheating, hence reducing the thermal stresses inside the
winding. A diagram of the powering circuit with protection is shown in figure 2.7.

A bipolar thyristor power converter rated at 520 kW with passive L-C filters is used to power
the CMS solenoid. It covers a range of voltages from +26 V to -23 V, with a nominal DC current
of 19.1 kA. In case of a sudden switch off of the power converter, the current decays naturally in
the bus-bar resistance and through the free-wheel thyristors until the opening of the main breakers.
Inside the power converter, an assembly of free-wheel thyristors, mounted on naturally air-cooled
heat sinks, is installed. In case of non-opening of the main switch breakers, the thyristors are
rated to support 20 kA DC for 4 minutes. The current discharge is achieved by disconnecting the
electrical power source by the use of two redundant 20 kA DC normally-open switch breakers,
leaving the solenoid in series with a resistor, in a L-R circuit configuration. The stored magnetic
energy is therefore extracted by thermal dissipation in the so-called dump resistor. This resistor is
external to the solenoid cryostat and is designed to work without any active device. It is positioned
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outdoors taking advantage of natural air convection cooling. The fast discharge (FD) is automat-
ically triggered by hardwired electronics only in case of a superconductive-to-resistive transition,
a so-called quench, and for unrecoverable faults which require fast current dumping. The FD time
constant is about 200 s. An emergency FD button is also available to the operator in case of need.
As the coil becomes resistive during the FD, energy is dissipated inside the coil, which heats up.
As a consequence, this necessitates a post-FD cool-down of the coil. The FD is performed on a
30 mQ dump resistor, as a compromise to keep the dump voltage lower than 600 V, and to limit
the coil warm-up and subsequent cool-down time. For faults involving the 20 kA power source, a
slow discharge (SD) is triggered through hardwired electronics on a 2 mQ dump resistor. The SD
current evolution is typically exponential, and its time constant is 7025 s, but the coil stays in the
superconducting state as the heat load, about 525 W, is fully absorbed by the cooling refrigerator.
For current lower than 4 kA, a FD is performed in any case, as the heat load is small enough for the
refrigerator. The same resistor is used in both cases for the FD and the SD, using normally open
contactors, leaving the dump resistor modules either in series (FD) or in parallel (SD). For other
cases, and depending on the alarms, the coil current can be adjusted by the operator, or ramped
down to zero, taking advantage of the two-quadrant converter.

2.2.4 Vacuum system

The vacuum system has been designed to provide a good insulation inside the 40 m® vacuum
volume of the coil cryostat. It consists of 2 double-primary pumping stations, equipped with 2
rotary pumps and 2 Root’s pumps, that provide the fore vacuum to the two oil diffusion pumps
located at the top of CMS and connected to the coil cryostat via the current leads chimney and the
helium phase separator. The rotary pumps have a capacity of 280 m3/h while the two Root’s pumps
have a flow of 1000 m3/h. The biggest oil diffusion pump, installed via a DN 400 flange on the
current leads chimney, has a nominal flow of 8000 1/s at 10~* mbar of fore vacuum. The smallest
one delivers 3000 1/s at the phase separator.

2.2.5 Cryogenic plant

The helium refrigeration plant for CMS is specified for a cooling capacity of 800 W at 4.45 K, 4500
W between 60 and 80 K, and simultaneously 4 g/s liquefaction capacity. The primary compressors
of the plant have been installed, in their final position, while the cold box, as well as the intermedi-
ate cryostat which interfaces the phase separator and the thermo-syphon, were moved underground
after the completion of the magnet test. These components were commissioned with the help of a
temporary heat load of 6.5 kW that simulated the coil cryostat which was not yet available. The
performance of the cold box has been measured in cool-down mode and in nominal and operation
mode.

2.2.6 Other ancillaries

* Current leads. The two 20-kA current leads are made of a high purity copper braid, having
a cross section of 1800 mm? and RRR (Residual Resistivity Ratio) of 130, placed inside a
conduit and cooled by circulating helium gas. Without cooling, the current leads are able
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o Cold box

Figure 2.8: The layout for the surface test at SX5, showing only the central barrel. The magnet is
connected to the cryoplant (through the proximity cryogenics), the vacuum and the power systems.

to hold a current of 20 kA for 5 minutes, followed by a FD without any damage, as the
temperature at the hot spot stays below 400 K [14].

* Grounding circuit. The grounding circuit is connected across the solenoid terminals. It fixes
the coil circuit potential, through a 1 kQ resistor, dividing by two the potential to ground.
The winding insulation quality is monitored by continuously measuring the leakage current
through a 10 Q grounding resistor.

* Quench detection system. The quench detection system is a key element of the Magnet Safety
System (MSS). The role of the quench detection system is to detect a resistive voltage be-
tween two points of the coil, whose value and duration are compared to adjustable thresholds.
The voltage taps are protected by 4.7 kQ, 6 W resistors. There are 2 redundant systems, with
resistor bridge detectors and differential detectors. For each system, there are 5 detectors.
Each resistor bridge detector spans two modules and one detector spans the whole solenoid.
Each coil module is compared with two other modules through two differential detectors.

2.3 Operating test

The magnet and all its ancillaries were assembled for testing in SX5 and ready for cool-down in
January 2006. Figure 2.8 shows the test layout.
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Figure 2.9: Graph of the coil minimum and maximum temperatures during the cool-down from
room temperature to 4.5 K.

2.3.1 Cool-down

The cool-down of the solenoid started on February, the 2nd, 2006 and in a smooth way brought the
cold mass to 4.6 K in 24 days. Figure 2.9 shows the cool-down curve. The only glitch was due to
an overpressure on a safety release valve that stopped cooling for one night before the system was
restarted.

One important aspect monitored during the cool-down was the amount of coil shrinkage. In
order to explain this point, we refer to the coil suspension system inside the cryostat (figure 2.1),
made of longitudinal, vertical, and axial tie-rods in Ti alloy. The magnet is supported by 2 x 9
longitudinal tie rods, 4 vertical tie rods, and 8 radial tie rods. The tie rods are equipped with
compensated strain gauges to measure the forces on 2 x 3 longitudinal, plus the vertical and radial
tie rods. The tie rods are loaded in tension and flexion. To measure the tension and flexion strain,
3 strain gauges are placed on the tie rods at 0°, 90°, and 180°.

The measured stresses in the tie bars due to the cool-down, causing a shrinkage of the cold
mass and putting the tie-bars in tension, are shown in table 2.2. A comparison with the expected
values is provided as well. The measured axial and radial shrinkage of the cold mass is shown in
figure 2.10.

2.3.2 Charge and discharge cycles

The magnetic tests took place during August 2006, with additional tests during the magnet field
mapping campaign in October 2006. The current ramps for the field mapping are detailed in fig-
ure 2.11. The tests were carried out through magnet charges to progressively higher currents,
setting increasing d//dt, followed by slow or fast discharges. During these current cycles all the
relevant parameters related to electrical, magnetic, thermal, and mechanical behaviours have been
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Table 2.2: Calculated and measured cold mass displacements and related stresses on tie-rods due
to the cool-down to 4.5 K.

Expected value | Measured value

Cold Mass Shrinkage

Longitudinal 26 mm 27 mm
Radial 14 mm 15 mm
Tie rod stress due to cool-down

Vertical 315 MPa 310+45 MPa
Radial 167 MPa 153+20 MPa
Longitudinal 277 MPa 260420 MPa

(a) Axial thermal contraction
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Figure 2.10: Axial (a) and radial (b) shrinkage of the cold mass from 300 K to 4.5 K.
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Figure 2.11: Magnet cycles during the CMS magnet tests in October 2006.

recorded. Depending on the level of the current at the trigger of a fast discharge, the time needed
for re-cooling the coil can be up to 3 days.

2.3.3 Cold mass misalignment

The support system is designed to withstand the forces created by a 10 mm magnetic misalign-
ment, in any direction of the cold mass with respect to the iron yoke. Geometrical surveys were
performed at each step of the magnet assembly to ensure a good positioning. Nevertheless, the
monitoring of the coil magnetic misalignment is of prime importance during magnet power test.
The misalignment can be calculated either by analysing the displacement of the cold mass or the
stresses of the tie rods when the coil is energised. The displacement is measured at several loca-
tions and directions at both ends of the coil with respect to the external vacuum tank wall, by the
use of rectilinear potentiometers. Results are displayed in figures 2.12 and 2.13. The displacement
of the coil’s geometric centre is found to be 0.4 mm in z, in the +z direction. According to the
computations, such a displacement indicates that the coil centre should be less than 2 mm off the
magnetic centre in +z. As the coil supporting system is hyper-static, the tie rods are not all ini-
tially identically loaded. But the force increase during energising is well distributed, as shown in
figure 2.14 and figure 2.15, giving the force measurements on several tie rods. These figures also
indicate the forces computed in the case of a 10-mm magnetic misalignment, together with forces
calculated for the ideally-centred model, showing there is no noticeable effect of misalignment on
the forces.

Using the strain gauges glued on the cold mass (outer mandrel of the central module, CBO),
one can determine the Von Mises stress. The cold mass Von Mises stress versus the coil current is
given in figure 2.16. The measured value of Von Mises stress at 4.5 K and zero current is 23 MPa.
The value at 19.1 kA is 138 MPa. These values are in agreement with computations done during
design [3, 6].
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Figure 2.13: Radial displacement at both ends of the coil in different positions during energising.

2.3.4 Electrical measurements

The apparent coil inductance measured through the inductive voltage V = LdI/dt is decreasing
while increasing the current, as the iron yoke reaches the saturation region. From voltage measure-
ments at the coil ends in the cryostat, while ramping up the coil current at a regulated d//d¢, the
inductance is calculated and results are given in figure 2.17. Initially the apparent inductance of the
coil is 14.7 H at zero current, and then it decreases to 13.3 H at 18 kA. The 21 resistive electrical
joints, which connect the 5 modules together and, for each module, the 4 layers, are positioned ex-
ternally to the coil, on the outer radius of the external mandrel, in low magnetic field regions. The
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Figure 2.15: Force increase on several radial tie rods; the average force at zero current is 15 tons.

resistance measurements of the joints indicate values ranging from 0.7 nQ to 1.6 nQ at 19.1 kA,
corresponding to a maximum dissipation in the joint of 0.6 W. The specific joint cooling system is
fully efficient to remove this local heat deposit in order to avoid that the resistive joints generate a
local quench of the conductor. As mentioned above, the fast discharge causes a quench of the coil,
through the quench-back process. The typical current decay at the nominal current of 19.14 kA is
given in figure 2.18.

The effect of the mutual coupling of the coil with the external mandrel is clearly visible at
the beginning of the current fast discharge as shown in the zoomed detail of figure 2.18. It appears
clearly that a high d//ds of about 500 A/s occurs at the very beginning of the discharge. The
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Figure 2.17: Coil inductance as a function of the magnet current.

minimum and maximum temperatures of the coil are displayed in figure 2.19 for a fast discharge
at 19.14 kA. A maximum temperature difference of 32 K is measured on the coil between the
warmest part, located on the coil central module internal radius, and the coldest part, located on the
external radius of the mandrel. It should be noted that the thermal gradient is mainly radial. The
temperature tends to equilibrate over the whole coil 2 hours after the trigger of the fast discharge.
The average cold mass temperature after a fast discharge at 19 kA is 70 K.

During a magnet discharge, the dump resistor warms up, with a maximum measured temper-
ature increase of 240°C, resulting in an increase of the total dump resistance value by up to 19%.
Also the coil internal electrical resistance is increased by up to 0.1 Q at the end of a FD at 19.14 kA.
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Figure 2.18: Magnet current during fast discharge at the nominal field of 4 T. The insert shows the
details at the beginning of the discharge.
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Figure 2.19: Minimum and maximum temperatures detected on the cold mass during the fast
discharge from 19.1 kKA.

The effect of both the dump resistor and the magnet electrical resistance increasing was revealed
through the measurement of the discharge time constant, which was equal to 177 s, 203 s, 263 s,
348 s and 498 s for fast discharges respectively at 19 kA, 17.5 kA, 15 kA, 12.5 kA and 7.5 kA. This
is visible in figure 2.20. The temperature recovery of the dump resistor is achieved in less than 2
hours after the trigger of a fast dump. It is 5 hours after the trigger of a slow dump.

In the case of a fast dump at 19.14 kA, typically half of the total energy (1250 MJ) is dissipated
as heat in the external dump resistor. The energy dissipated in the dump resistor as a function of the
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Figure 2.20: The normalised discharge current as a function of time for different initial currents,
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Figure 2.21: Energy dissipated in the external dump resistor and the mean and maximum temper-
atures of the coil during FD.

magnet current at the trigger of a FD was measured for each FD performed during the magnet tests
and is given in figure 2.21. The magnet current is precisely measured by the use of two redundant
DCCTs (DC current transformer). The peak-to-peak stability of the current is 7 ppm with a voltage
ripple of 2.5% (0.65 V). In order to gain on the operation time, an acceleration of the slow dump
has been tested and validated by switching to the fast dump configuration at 4 kA. It has been
checked that the cryogenic refrigerator can take the full heat load, and the magnet stays in the
superconducting state. This Slow Dump Accelerated (SDA) mode was tested in semi-automatic
mode through the cryogenics supervisory system and the magnet control system, and it will be
fully automatic for the final installation in the cavern.
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Figure 2.22: Axial forces acting on the yoke Z-stops during the coil energising.

2.3.5 Yoke mechanical measurements

The elements of the return yoke, barrels and endcaps, are attached with several hydraulic locking
jacks, which are fixed on each barrel and endcap. They are pre-stressed in order to bring the barrels
and endcaps into contact at specific areas using the aluminium-alloy Z-stop blocks. There are
24 Z-stops between each barrel and endcap. A computation of the total axial compressive force
gives 8900 tons. The stresses are measured on some Z-stops; the forces on these Z-stops are given
in figure 2.22 and compared to the case of a uniformly distributed load on all the Z-stops. To
allow for uniform load distribution and distortion during magnet energising, the yoke elements are
positioned on grease pads. During magnet energising, the displacement of the barrel yoke elements
under the compressive axial force is very limited, while the displacement of the yoke end cap disk
YE+1 is clearly noticeable on the outer radius of the disk, due to the axial attraction of the first
yoke endcaps towards the interaction point. The measurement of the distance between the barrel
elements parallel to the axial axis of the detector is given in figure 2.23. The endcap YE+1 disk is
equipped with rosette strain gauges on its inner face, under the muon chambers and near the bolts
at the interface between two adjacent segments. The main stresses measured in these regions do
not exceed 88 MPa.

2.3.6 Coil stability characteristics

The NbTi superconductor critical temperature is T, = 9.25 K at zero field. At B=4.6T (peak field
on the conductor), T, = 7.30 K. The current-sharing temperature T, is defined as the maximum
temperature for which the current can flow, with no dissipation, in the superconducting part. For
CMS the operating current is 19 143 A, while the critical current, according to the measurements
done on a short sample extracted from the length used in the inner layer of the central module
(the one exposed to the higher field), is I (T=4.5 K, B=4.6T) = 62 kA leading to T, = 6.44 K,
i.e., the temperature margin is 1.94 K. This margin is a little higher than the designed one (1.83
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Figure 2.23: Measured displacement of the yoke during the coil energising.
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Figure 2.24: The minimum and maximum temperatures and voltage of the coil as a function of
time, with only a few amperes of current, showing the superconducting-to-resistive-state transition
at around 9.3 K.

K) because the nominal current is less than the one used in this kind of computation (19.5 kA)
and the expected conductor critical current was from 7% to 10% lower than the real one obtained
through advanced and qualified processes. The T, value was confirmed at 9.3 K during cryogenic
recovery tests (figure 2.24) at zero field. The conductor pure-aluminium stabilizer RRR, deduced
from electrical measurements during cool-down, is found to be above 1800.
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2.3.7 Coil warm-up

Following the test of the magnet on the surface, the cold mass had to be warmed up to room tem-
perature before lowering. The coil, inside its cryostat, was attached to the central barrel YBO to
avoid any risk due to vacuum degradation during the transport operations. The warm-up was per-
formed using a dedicated power supply (200 V-300 A DC) to maintain integrity of the coil/mandrel
interface. Knowing the temperature dependence of both the electrical resistivity and the specific
heat of the coil materials, the temperature increase for a given electrical power is calculated. Tak-
ing into account the capacity of the warm-up supply, and limiting the temperature increase to 1
K/hour, the warm-up was performed as shown in figure 2.25. As the warm-up was done after a fast
discharge, the coil temperature was already at 70 K. Nevertheless, the warm-up took place only
at night as the yoke was opened to continue integration activities inside the detector. Ultimately,
the warm-up lasted only 3 weeks. The maximum temperature gradient across the coil during the
warm-up exercise was less than 9 K.
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Chapter 3

Inner tracking system

3.1 Introduction

The inner tracking system of CMS is designed to provide a precise and efficient measurement
of the trajectories of charged particles emerging from the LHC collisions, as well as a precise
reconstruction of secondary vertices. It surrounds the interaction point and has a length of 5.8 m
and a diameter of 2.5m. The CMS solenoid provides a homogeneous magnetic field of 4 T over
the full volume of the tracker. At the LHC design luminosity of 10**cm=2s~! there will be on
average about 1000 particles from more than 20 overlapping proton-proton interactions traversing
the tracker for each bunch crossing, i.e. every 25ns. Therefore a detector technology featuring high
granularity and fast response is required, such that the trajectories can be identified reliably and
attributed to the correct bunch crossing. However, these features imply a high power density of
the on-detector electronics which in turn requires efficient cooling. This is in direct conflict with
the aim of keeping to the minimum the amount of material in order to limit multiple scattering,
bremsstrahlung, photon conversion and nuclear interactions. A compromise had to be found in this
respect. The intense particle flux will also cause severe radiation damage to the tracking system.
The main challenge in the design of the tracking system was to develop detector components able
to operate in this harsh environment for an expected lifetime of 10 years. These requirements on
granularity, speed and radiation hardness lead to a tracker design entirely based on silicon detector
technology. The CMS tracker is composed of a pixel detector with three barrel layers at radii
between 4.4cm and 10.2cm and a silicon strip tracker with 10 barrel detection layers extending
outwards to a radius of 1.1 m. Each system is completed by endcaps which consist of 2 disks in
the pixel detector and 3 plus 9 disks in the strip tracker on each side of the barrel, extending the
acceptance of the tracker up to a pseudorapidity of |n| < 2.5. With about 200m? of active silicon
area the CMS tracker is the largest silicon tracker ever built [15, 16].

The construction of the CMS tracker, composed of 1440 pixel and 15 148 strip detector
modules, required the development of production methods and quality control procedures that are
new to the field of particle physics detectors. A strong collaboration of 51 institutes with almost
500 physicists and engineers succeeded over a period of 12 to 15 years to design, develop and build
this unique device.
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3.1.1 Requirements and operating conditions

The expected LHC physics program [17] requires a robust, efficient and precise reconstruction of
the trajectories of charged particles with transverse momentum above 1GeV in the pseudorapidity
range |n| < 2.5. A precise measurement of secondary vertices and impact parameters is necessary
for the efficient identification of heavy flavours which are produced in many of the interesting
physics channels. Together with the electromagnetic calorimeter and the muon system the tracker
has to identify electrons and muons, respectively. Tau leptons are a signature in several discovery
channels and need to be reconstructed in one-prong and three-prong decay topologies. In order to
reduce the event rate from the LHC bunch crossing rate of 40 MHz to about 100Hz which can be
permanently stored, tracking information is heavily used in the high level trigger of CMS.

The operating conditions for a tracking system at the LHC are very challenging. As already
mentioned, each LHC bunch crossing at design luminosity creates on average about 1000 particles
hitting the tracker. This leads to a hit rate density of 1 MHz/mm? at a radius of 4cm, falling to
60 kHz/mm? at a radius of 22cm and 3 kHz/mm? at a radius of 115cm. In order to keep the
occupancy at or below 1% pixelated detectors have to be used at radii below 10cm. For a pixel
size of 100 x 150 um? in r-¢ and z, respectively, which is driven by the desired impact parameter
resolution, the occupancy is of the order 10~* per pixel and LHC bunch crossing. At intermediate
radii (20cm < r < 55cm) the reduced particle flux allows the use of silicon micro-strip detectors
with a typical cell size of 10cm x 80 pm, leading to an occupancy of up to 2—3% per strip and LHC
bunch crossing. In the outer region (55cm < r < 110cm) the strip pitch can be further increased.
Given the large areas that have to be instrumented in this region, also the strip length has to be
increased in order to limit the number of read-out channels. However, the strip capacitance scales
with its length and therefore the electronics noise is a linear function of the strip length as well. In
order to maintain a good signal to noise ratio of well above 10, CMS uses thicker silicon sensors
for the outer tracker region (500 um thickness as opposed to the 320 um in the inner tracker) with
correspondingly higher signal. These thicker sensors would in principle have a higher depletion
voltage. But since the radiation levels in the outer tracker are smaller, a higher initial resistivity can
be chosen such that the initial depletion voltages of thick and thin sensors are in the same range of
100 V to 300 V. In this way cell sizes up to about 25cm x 180 um can be used in the outer region of
the tracker, with an occupancy of about 1%. These occupancy-driven design choices for the strip
tracker also satisfy the requirements on position resolution.

CMS is the first experiment using silicon detectors in this outer tracker region. This novel
approach was made possible by three key developments:

e sensor fabrication on 6 inch instead of 4 inch wafers reduced the sensor cost to
5-10 CHF/cm? and allowed the coverage of the large required surfaces with silicon sensors,

e implementation of the front-end read-out chip in industry-standard deep sub-micron technol-
ogy led to large cost savings and to an improved signal-to-noise performance,

* automation of module assembly and use of high throughput wire bonding machines.

The radiation damage introduced by the high particle fluxes at the LHC interaction regions
is a severe design constraint. Table 3.1 shows the expected fast hadron fluence and radiation dose
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Table 3.1: Expected hadron fluence and radiation dose in different radial layers of the CMS tracker
(barrel part) for an integrated luminosity of 500fb~! (= 10 years). The fast hadron fluence is a
good approximation to the 1 MeV neutron equivalent fluence [17].

Radius | Fluence of fast hadrons | Dose | Charged particle flux
(cm) (10 cm™?) (kGy) (cm~2s7 1)
4 32 840 108
11 4.6 190
22 1.6 70 6 x 10°
75 0.3 7
115 0.2 1.8 3x10°

in the CMS barrel tracker for an integrated luminosity of 500fb~! corresponding to about 10 years
of LHC operation [15, 17]. Neutrons generated by hadronic interactions in the ECAL crystals
make up a substantial contribution to the fast hadron fluence, which actually dominates in the outer
tracker close to the ECAL surface. The uncertainties on these estimates due to the extrapolation
error of the inelastic proton proton cross-section, momentum distributions and multiplicities to
/s = 14TeV and in the Monte Carlo description of the cascade development lead to a safety factor
of 1.5 (2 in regions where the neutron contribution dominates) which was applied to these estimates
in order to define the design requirements for the tracker.

Three different effects had to be considered in the design of a radiation tolerant silicon tracker.
Surface damage is created when the positively charged holes, generated by the passage of an ion-
izing particle, get trapped in a silicon oxide layer. This is mostly a concern for the front-end chips
where this additional space charge changes for instance the characteristics of MOS structures. Sur-
face damage simply scales with the absorbed dose. The silicon sensors are mainly affected by bulk
damage, i.e. modifications to the silicon crystal lattice which are caused by non-ionizing energy
loss (NIEL) and lead to additional energy levels in the band gap. NIEL is a complicated process,
depending on particle type and energy, but is found to scale approximately with the fast hadron flu-
ence. The consequences are an increase of the leakage current (linear in fluence), a change in the
doping from n- to p-type with a corresponding change in depletion voltage by a few hundred volts
over the lifetime of the tracker, and the creation of additional trapping centers which will reduce
the signal by roughly 10% after 10 years of LHC running [18]. The design of the silicon sensors
and the read-out electronics has to take this into account and assure a signal-to-noise ratio of 10:1
or better over the full lifetime of the detector, in order to guarantee a robust hit recognition at an
acceptable fake hit rate. Finally, transient phenomena due to the generation of charge by ionizing
particles in the electronic circuitry can change for instance the state of memory cells and therefore
disturb or even stop the correct functioning of the read-out (single event upset, SEU).

The increased detector leakage current can lead to a dangerous positive feedback of the self
heating of the silicon sensor and the exponential dependence of the leakage current on temperature,
called thermal runaway. This has to be avoided by efficient coupling of the silicon sensors to
the cooling system and by a low operating temperature. For this reason it is foreseen that the
whole tracker volume will be operated at or slightly below —10°C. After 10 years of operation it is
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expected that this will require a cooling fluid temperature of about —27°C which in turn means that
all structures in the tracker have to survive temperature cycles between room temperature and about
—30°C. A second effect, called reverse annealing, requires to keep the silicon sensors permanently
well below 0°C except for short maintenance periods. This effect is caused by the interaction of
radiation induced defects in the silicon sensors which can lead to more serious damage and to an
even stronger change in depletion voltage with fluence. Experimentally it is found that reverse
annealing becomes insignificant for temperatures roughly below 0°C [18].

The read-out chips employed in the CMS tracker are fabricated in standard 0.25 um CMOS
technology which is inherently radiation hard due to the thin gate oxide (and special design rules).
The lifetime of the silicon strip tracker is therefore limited by the radiation damage to the silicon
sensors. For efficient charge collection they always need to be over-depleted, requiring bias volt-
ages up to 500 V after 10 years of LHC operation. This reaches the limit of the typical high voltage
stability of current sensor layouts. Furthermore, the increased leakage currents of the sensors will
at some point lead to thermal runaway. All tests have shown that the silicon strip tracker will re-
main fully operational for 10 years of LHC running. For the pixel detector on the other hand, which
has to survive even higher radiation doses, under-depleted operation is possible due to a different
sensor layout. Its lifetime reaches from at least 2 years at full LHC luminosity for the innermost
layer to more than 10 years for the third layer.

The ultimate position resolution of the pixel and strip sensors is degraded by multiple scatter-
ing in the material that is necessary to precisely hold the sensors, to supply the electrical power (in
total about 60 kW for the CMS tracker) and to cool the electronics and the silicon sensors. Nuclear
interactions of pions and other hadrons in this material reduce significantly the tracking efficiency
for these particles. In addition, this material leads to photon conversion and bremsstrahlung which
adversely affect the measurement accuracy of the electromagnetic calorimeter. It was therefore a
requirement to keep the amount of this material to a minimum.

3.1.2 Overview of the tracker layout

A schematic drawing of the CMS tracker is shown in figure 3.1. At radii of 4.4,7.3 and 10.2cm,
three cylindrical layers of hybrid pixel detector modules surround the interaction point. They are
complemented by two disks of pixel modules on each side. The pixel detector delivers three high
precision space points on each charged particle trajectory. It is described in detail in section 3.2. In
total the pixel detector covers an area of about 1 m? and has 66 million pixels.

The radial region between 20cm and 116cm is occupied by the silicon strip tracker, which
is described in detail in section 3.3. It is composed of three different subsystems. The Tracker
Inner Barrel and Disks (TIB/TID) extend in radius towards 55cm and are composed of 4 barrel
layers, supplemented by 3 disks at each end. TIB/TID delivers up to 4 r-¢ measurements on a
trajectory using 320 um thick silicon micro-strip sensors with their strips parallel to the beam axis
in the barrel and radial on the disks. The strip pitch is 80 um on layers 1 and 2 and 120 gm on
layers 3 and 4 in the TIB, leading to a single point resolution of 23 um and 35 um, respectively.
In the TID the mean pitch varies between 100 um and 141 um. The TIB/TID is surrounded by
the Tracker Outer Barrel (TOB). It has an outer radius of 116cm and consists of 6 barrel layers of
500 um thick micro-strip sensors with strip pitches of 183 ttm on the first 4 layers and 122 ym on
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Figure 3.1: Schematic cross section through the CMS tracker. Each line represents a detector
module. Double lines indicate back-to-back modules which deliver stereo hits.

layers 5 and 6. It provides another 6 r-¢ measurements with single point resolution of 53 um and
35 um, respectively. The TOB extends in z between +118cm. Beyond this z range the Tracker
EndCaps (TEC+ and TEC- where the sign indicates the location along the z axis) cover the region
124cm < |z| < 282cm and 22.5cm < |r| < 113.5cm. Each TEC is composed of 9 disks, carrying
up to 7 rings of silicon micro-strip detectors (320 um thick on the inner 4 rings, 500 um thick
on rings 5-7) with radial strips of 97 um to 184 um average pitch. Thus, they provide up to 9 ¢
measurements per trajectory.

In addition, the modules in the first two layers and rings, respectively, of TIB, TID, and
TOB as well as rings 1, 2, and 5 of the TECs carry a second micro-strip detector module which is
mounted back-to-back with a stereo angle of 100 mrad in order to provide a measurement of the
second co-ordinate (z in the barrel and r on the disks). The achieved single point resolution of this
measurement is 230 um and 530 um in TIB and TOB, respectively, and varies with pitch in TID
and TEC. This tracker layout ensures at least = 9 hits in the silicon strip tracker in the full range of
In| < 2.4 with at least ~ 4 of them being two-dimensional measurements (figure 3.2). The ultimate
acceptance of the tracker ends at |n| &~ 2.5. The CMS silicon strip tracker has a total of 9.3 million
strips and 198 m? of active silicon area.

Figure 3.3 shows the material budget of the CMS tracker in units of radiation length. It
increases from 0.4 X at 1 ~ 0 to about 1.8 Xj at || ~ 1.4, beyond which it falls to about 1 Xj at
In|~2.5.

3.1.3 Expected performance of the CMS tracker

For single muons of transverse momenta of 1, 10 and 100 GeV figure 3.4 shows the expected reso-
lution of transverse momentum, transverse impact parameter and longitudinal impact parameter, as
a function of pseudorapidity [17]. For high momentum tracks (100 GeV) the transverse momentum
resolution is around 1 —2% up to || &~ 1.6, beyond which it degrades due to the reduced lever arm.
At a transverse momentum of 100 GeV multiple scattering in the tracker material accounts for 20 to
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Figure 3.3: Material budget in units of radiation length as a function of pseudorapidity 1 for the
different sub-detectors (left panel) and broken down into the functional contributions (right panel).

30% of the transverse momentum resolution while at lower momentum it is dominated by multiple
scattering. The transverse impact parameter resolution reaches 10 um for high p; tracks, domi-
nated by the resolution of the first pixel hit, while at lower momentum it is degraded by multiple
scattering (similarly for the longitudinal impact parameter). Figure 3.5 shows the expected track
reconstruction efficiency of the CMS tracker for single muons and pions as a function of pseudo-
rapidity. For muons, the efficiency is about 99% over most of the acceptance. For || =~ 0 the effi-
ciency decreases slightly due to gaps between the ladders of the pixel detector at z =~ 0. At high n
the efficiency drop is mainly due to the reduced coverage by the pixel forward disks. For pions and
hadrons in general the efficiency is lower because of interactions with the material in the tracker.
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Figure 3.5: Global track reconstruction efficiency for muons (left panel) and pions (right panel)
of transverse momenta of 1, 10 and 100 GeV.

3.1.4 Tracker system aspects

All elements of the CMS tracker are housed in the tracker support tube, which is suspended on the
HCAL barrel. The tracker support tube is a large cylinder 5.30 m long with an inner diameter of
2.38 m. The 30-mm-thick wall of the cylinder is made by two 950-1/T300 carbon fiber composite
skins, 2 mm in thickness, sandwiching a 26-mm-high Nomex core. Over the entire length of the
tube’s inner surface, two carbon fiber rails are attached on the horizontal plane. The tracker outer
barrel (TOB) and both endcaps (TEC+ and TEC-) rest on these rails by means of adjustable sliding
pads. The tracker inner barrel and disks (TIB/TID) are in turn supported by the TOB. The angle
between the guiding elements of these rails is controlled to better than 0.183 mrad, corresponding
to a parallelism between the guides better than 0.5 mm in all directions over the full length.

An independent support and insertion system for the pixel detectors, the central section of
the beam pipe and the inner elements of the radiation monitor system spans the full length of the
tracker at its inner radius. This is composed of three long carbon fiber structures, joined together
during tracker assembly to form two continuous parallel planes, on which precision tracks for
the installation, support and positioning of each element are machined. The central element is
a 2266.5-mm-long and 436-mm-wide cylinder which is connected with flanges to the TIB/TID
detector. This element provides support and accurate positioning to the pixel detectors. Two 2420-
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mm-long side elements are coupled to it only by very precise pinned connections, bridging the
gap between the faces of the TIB/TID and the closing flanges of the tracker without direct contact
to the TEC detectors. These side elements are therefore structurally decoupled from the silicon
strip detectors and can be installed and removed at any time with no impact on the strip detectors.
They serve several purposes: they provide support and alignment features for the central section
of the beam pipe, they allow the installation of the inner elements of the radiation monitor system,
and they are used for installation and removal of all the components permanently or temporarily
housed in the inner region of the tracker: beam pipe, bake-out equipment, pixel barrel, pixel disks
and radiation monitor. This system of permanent tracks, light but very stiff and stable, installed
in the core of the tracker will allow for the quickest possible intervention in this region during
maintenance, inducing no disturbance to the volume occupied by the silicon strip detectors. This
feature will be extremely valuable after some years of operation, when activation of components
and radiation damage on sensors will start becoming an issue.

The outer surface of the tracker tube faces the electromagnetic calorimeter, which is operated
at room temperature and requires good temperature stability. The surface of the electromagnetic
calorimeter must be kept at (18 +4)°C while the tracker volume needs to be cooled to below
—10°C. In order to achieve this thermal gradient over a very limited radial thickness, the inside
surface of the tracker support tube is lined with an active thermal screen. It ensures a temperature
below —10°C inside the tracker volume even when the sub-detectors and their cooling are switched
off, while maintaining a temperature above +12°C on the outer surface of the support tube in order
to avoid condensation. It also reduces the thermal stress across the support tube structure. The
thermal screen consists of 32 panels. On the inside, cold fluid is circulated in a thin aluminium
plate whilst, separated by 8mm of Rohacell foam, several polyimide-insulated resistive circuits
are powered to heat up the outer surface to the required temperature. The system is feed-back
controlled, based on 64 temperature sensors.

The total power dissipation inside the tracker volume is expected to be close to 60 kW. Mainly
for robustness in operation, the CMS tracker is equipped with a mono-phase liquid cooling system.
The liquid used for refrigeration of the silicon strip and pixel detector as well as the thermal screen
is CgF14. It has a sufficiently low viscosity even at the lowest required temperature, excellent
behaviour under irradiation and is extremely volatile (with practically no residues) thus minimizing
eventual damages from accidental leaks. The cooling system provides up to 77m? /hour of C¢F14
liquid to the tracker, at a temperature of down to —35°C and with a pressure drop of up to 8 bar.
This corresponds to a cooling capacity of up to 128 kW.

The full tracker volume (about 25m?) is flushed with pre-chilled dry nitrogen gas at a rate of
up to one volume exchange per hour.

3.2 Pixel detector

3.2.1 Pixel system general

The pixel system is the part of the tracking system that is closest to the interaction region. It
contributes precise tracking points in 7-¢ and z and therefore is responsible for a small impact
parameter resolution that is important for good secondary vertex reconstruction. With a pixel cell
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Figure 3.6: Geometrical layout of the pixel detector and hit coverage as a function of
pseudorapidity.

size of 100 x 150 um? emphasis has been put on achieving similar track resolution in both r-¢ and
z directions. Through this a 3D vertex reconstruction in space is possible, which will be important
for secondary vertices with low track multiplicity. The pixel system has a zero-suppressed read
out scheme with analog pulse height read-out. This improves the position resolution due to charge
sharing and helps to separate signal and noise hits as well as to identify large hit clusters from
overlapping tracks.

The pixel detector covers a pseudorapidity range —2.5< 1 <2.5, matching the acceptance
of the central tracker. The pixel detector is essential for the reconstruction of secondary vertices
from b and tau decays, and forming seed tracks for the outer track reconstruction and high level
triggering. It consists of three barrel layers (BPix) with two endcap disks (FPix). The 53-cm-long
BPix layers will be located at mean radii of 4.4, 7.3 and 10.2 cm. The FPix disks extending from
~6 to 15 cm in radius, will be placed on each side at z=4-34.5 and z=446.5 cm. BPix (FPix)
contain 48 million (18 million) pixels covering a total area of 0.78 (0.28) m?. The arrangement
of the 3 barrel layers and the forward pixel disks on each side gives 3 tracking points over almost
the full n-range. Figure 3.6 shows the geometric arrangement and the hit coverage as a function
of pseudorapidity 1. In the high 1 region the 2 disk points are combined with the lowest possible
radius point from the 4.4 cm barrel layer.

The vicinity to the interaction region also implies a very high track rate and particle fluences
that require a radiation tolerant design. For the sensor this led to an n+ pixel on n-substrate detector
design that allows partial depleted operation even at very high particle fluences. For the barrel
layers the drift of the electrons to the collecting pixel implant is perpendicular to the 4 T magnetic
field of CMS. The resulting Lorentz drift leads to charge spreading of the collected signal charge
over more than one pixel. With the analog pulse height being read out a charge interpolation allows
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to achieve a spatial resolution in the range of 15-20 um. The forward detectors are tilted at 20° in a
turbine-like geometry to induce charge-sharing. The charge-sharing is mainly due to the geometric
effect of particles entering the detector at an average angle of 20° away from normal incidence [19];
charge-sharing is also enhanced by the E x B drift. A position resolution of approximately 15 um
in both directions can be achieved with charge-sharing between neighbouring pixels. The reduction
in the depletion depth or the increase in bias voltage will lead to a reduction of charge-sharing and
therefore a degradation of the spatial resolution with radiation damage.

In order to allow a replacement of the innermost layers the mechanics and the cabling of the
pixel system has been designed to allow a yearly access if needed. At full LHC luminosity we
expect the innermost layer to stay operational for at least 2 years. The 3 layer barrel mechanics
as well as the forward disks are divided into a left and a right half. This is required to allow
installation along the beam pipe and to pass beyond the beam pipe support wires at z=1 1632 mm.
The 6 individual mechanical pieces are referenced to each other through precisely machined rails
inside the TIB cylinder. Power, cooling, the optical controls as well as the optical read-out lines
are brought to the detector through supply tube shells. In case of the barrel pixel system the supply
tubes have a flexible connection that needs to bend by a few degrees during insertion following the
slightly curved rails around the beam pipe support ring.

The pixel system is inserted as the last sub-detector of CMS after the silicon strip tracker has
been installed and after the central section of the beam pipe has been installed and baked out.

3.2.2 Sensor description
Technological choices

The sensors for the CMS-pixel detector adopt the so called n-on-n concept. The pixels consist
of high dose n-implants introduced into a high resistance n-substrate. The rectifying pn-junction
is placed on the back side of the sensor surrounded by a multi guard ring structure. Despite the
higher costs due to the double sided processing this concept was chosen as the collection of elec-
trons ensures a high signal charge at moderate bias voltages (< 600 V) after high hadron fluences.
Furthermore the double sided processing allows a guard ring scheme keeping all sensor edges at
ground potential.

The isolation technique applied for the regions between the pixel electrodes was developed
in close collaboration with the sensor vendors. Open p-stops [20] were chosen for the disks and
moderated p-spray [21] for the barrel. Both types of sensors showed sufficient radiation hardness
during an extensive qualification procedure including several test beams [22, 23].

Disk sensors

The disk sensors use the p-stop technique for interpixel isolation. To maximize the charge collec-
tion efficiency and minimize the pixel capacitance within the design rules of the vendor a width
of 8 um for the p-stop rings and a distance of 12 um between implants was chosen. Figure 3.7
shows a photograph of 4 pixel cells. The open ring p-stops, the bump-bonding pad and the contact
between the aluminium and the implanted collecting electrode are highlighted.
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The opening on the p-stop rings provides a low resistance path until full depletion is reached
to allow IV (current-voltage) characterization of the sensor on wafer and a high resistance path
when the sensor is over-depleted (10-20 V over-depletion) to assure interpixel isolation.

The process is completely symmetric with five photolithographic steps on each side to mini-
mize the mechanical stress on the silicon substrate and the potential bowing of the diced sensors.

The sensors were all fabricated in 2005 on 4 inch wafers. The depletion voltage is 45-50 V
and the leakage current is less than 10 nA per cm?. The 7 different sensor tiles needed to populate
a disk blade, ranging from 1 x 2 read-out chips (ROCs) to 2 x 5 ROCs, are implemented on a
single wafer.

A production yield higher than 90% has been achieved and 150 good sensors for each of the
seven flavours are available to the project for module assembly.

Barrel sensors

The sensors for the pixel barrel use the moderated p-spray technique for interpixel isolation. A
photograph of four pixels in a barrel sensor is shown in figure 3.8. Most area of a pixel is covered
with the collecting electrode formed by the n-implant. The gap between the n-implants is kept
small (20 um) to provide a homogeneous drift field which leads to a relatively high capacitance of
the order of 80-100 fF per pixel.
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In one corner of each pixel the so called bias dot is visible. They provide a high resistance
punch-through connection to all pixels which allows on-wafer IV measurements which are impor-
tant to exclude faulty sensors from the module production.

The dark frame around the pixel implants visible in figure 3.8 indicates the opening in the
nitride covering the thermal oxide. In this region the p-spray dose reaches the full level. Close
to the lateral pn-junction between the pixel implant and the p-sprayed inter-pixel region the boron
dose is reduced.

The sensor shown in figure 3.8 has undergone the bump deposition process. The Indium
bumps are visible as roughly 50 um wide octagons.

The sensors are processed on n-doped DOFZ-silicon [24] with (111) orientation and a resis-
tivity of about 3.7kQcm (after processing). This leads to a full depletion voltage of 50-60 V of
the 285 um thick sensors. All wafers for the production of the barrel sensors come from the same
silicon ingot to provide the best possible homogeneity of all material parameters.

The pixel barrel requires two different sensor geometries, 708 full (2 x 8 ROCs) and 96 half
modules (1 x 8 ROCs). They were processed in 2005 and 2006 using two different mask sets.

3.2.3 Pixel detector read-out
System overview

The pixel read-out and control system [25] consists of three parts: a read-out data link from the
modules/blades to the pixel front end driver (pxFED), a fast control link from the pixel front end
controller (pFEC) to the modules/blades and a slow control link from a standard FEC to the supply
tube/service cylinder. The latter is used to configure the ASICs on the supply tube/service cylinder
through a I>C protocol. Figure 3.9 shows a sketch of the system.

The front end consists of a Token Bit Manager (TBM) chip which controls several read-out
chips (ROCs). The pFEC sends the 40MHz clock and fast control signals (e.g. trigger, reset) to the
front end and programs all front end devices. The pxFED receives data from the front end, digitizes
it, formats it and sends it to the CMS-DAQ event builder. The pFEC, FEC and pxFED are VME
modules located in the electronics room and are connected to the front end through 40 MHz optical
links. The various components are described in the following sections.

Read-out chip

Sensor signals are read out by ROCs bump bonded to the sensors. A ROC is a full custom ASIC
fabricated in a commercial 0.25-um 5-metal-layer CMOS process and contains 52 x 80 pixels [26].
Its main purposes are:

* Amplification and buffering of the charge signal from the sensor.

e Zero suppression in the pixel unit cell. Only signals above a certain threshold will be read
out. This threshold can be adjusted individually for each pixel by means of four trim bits.
The trim bits have a capacitive protection against single event upset (SEU), which has shown
to reduce SEUs by 2 orders of magnitude [26]. The mean threshold dispersion after trimming
at T= —10°C is 90 electrons equivalent with a noise of 170 electrons.
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Figure 3.9: Block diagram of the pixel control and read-out system.

* Level 1 trigger verification. Hit information without a corresponding L1 trigger is aban-
doned.

* Sending hit information and some limited configuration data (analog value of last addressed
DAC) to the TBM chip. Pixel addresses are transferred as 6 level analog encoded digital
values within 5 clock cycles (125ns) while the pulse height information is truly analog.

* Adjusting various voltage levels, currents and offsets in order to compensate for chip-to-chip
variations in the CMOS device parameters. There are a total of 29 DACs on the chip.

The ROC needs two supply voltages of 1.5 V and 2.5 V. There are 6 on chip voltage regulators.
They compensate for differences in supply voltage due to voltage drops in module cables of dif-
ferent lengths, improve AC power noise rejection and strongly reduce intermodule cross-talk. An
on-chip temperature sensor allows the monitoring of the module temperature online. The ROC is
controlled through a modified I*C interface running at 40 MHz. The configuration data can be
downloaded without stopping data acquisition.

There are a few architecture inherent data loss mechanisms. The particle detection ineffi-
ciency has been measured in a high-rate pion beam. It is in fairly good agreement with expectations
and reaches 0.8%, 1.2% and 3.8% respectively for the three layers at a luminosity of 10°** s~!ecm ™2
and 100 kHz L1 trigger rate.

The power consumption depends on the pixel hit rate. At the LHC design luminosity, the
ROC contributes with 34 u'W per pixel about 88% (62%) to the total pixel detector front end power
budget before (after) the detector has received a total fluence of 6x 10"/cm?.
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Token Bit Manager chip

The TBM [27] controls the read-out of a group of pixel ROCs. The TBM is designed to be located
on the detector near to the pixel ROCs. In the case of the barrel, they will be mounted on the
detector modules and will control the read-out of 8 or 16 ROCs depending upon the layer radius.
In the case of the forward disks, they will be mounted on the disk blades and will control the read-
out of 21 or 24 ROCs depending on blade side. A TBM and the group of ROCs that it controls will
be connected to a single analog optical link over which the data will be sent to the front end driver,
a flash ADC module located in the electronics house. The principal functions of the TBM include
the following:

* It will control the read-out of the ROCs by initiating a token pass for each incoming Level-1
trigger.

* On each token pass, it will write a header and a trailer word to the data stream.

¢ The header will contain an 8 bit event number and the trailer will contain 8 bits of error
status. These will be transferred as 2 bit analog encoded digital.

* It will distribute the Level-1 triggers, and clock to the ROCs.

Each arriving Level-1 trigger will be placed on a 32-deep stack awaiting its associated token pass.
Normally the stack will be empty but is needed to accommodate high burst rates due to noise,
high track density events, or trigger bursts. Since there will be two analog data links per module
for the inner two layers of the barrel, the TBMs will be configured as pairs in a Dual TBM Chip.
In addition to two TBMs, this chip also contains a Control Network. The Hub serves as a port
addressing switch for control commands that are sent from the DAQ to the front end TBMs and
ROC:s. These control commands will be sent over a digital optical link from a front end controller
in the electronics house to the front end Hubs. The commands will be sent using a serial protocol,
running at a speed of 40 MHz. This high speed is mandated by the need to rapidly cycle through
a refreshing of the pixel threshold trim bits that can become corrupted due to single event upsets.
There are four external, write only ports on each Hub for communicating with the ROCs and there
is one internal read/write port for communicating with the TBMs within the chip. The first byte of
each command will contain a 5-bit Hub address and a 3-bit port address. When a Hub is addressed,
it selects the addressed port, strips off the byte containing the Hub/port address and passes the
remainder of the command stream unmodified onto the addressed port. The outputs of the external
ports consist of two low voltage differential lines for sending clock and data.

Analog chain

The hit information is read out serially through analog links in data packets containing all hits
belonging to a single trigger. Within such packets a new analog value is transmitted every 25 ns
and digitized in the Front End Driver (pxFED) at the same rate. Each pixel hit uses 6 values, or
150 ns. Five values are used to encode the address of a pixel inside a ROC and the sixth value
represents the signal charge. Only the charge signals are truly analog while headers and addresses
are discrete levels generated by DACs. No ROC IDs are sent but every ROC adds a header, whether
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it has hits or not in order to make the association of hits to ROCs possible. The sequential read-out
is controlled by a token bit which is emitted by the TBM, passed from ROC to ROC and back to the
TBM. The differential electrical outputs of the ROCs are multiplexed by the TBM onto either one or
two output lines. On the same lines the TBM transmits a header before starting the ROC read-out.
After receiving the token back from the last ROC in the chain the TBM sends a trailer containing
status information. From the TBM to the end ring of the pixel barrel the read-out uses the module
Kapton cable. The Kapton cable has a ground mesh on the back side and the differential analog
lines are separated by quiet lines from the fast digital signals. Nevertheless, cross-talk from LVDS
signals was found to be unacceptable and a low swing digital protocol is being used instead. On
the end ring the analog signals are separated from the digital and all analog signals of the sector are
sent on a separate Kapton cable to a printed circuit board that houses the Analog Optical Hybrids
(AOH). The signal path between TBM and AOH is designed with a constant impedance of 40 Q
and terminated on the AOH. The optical links of the pixel system are identical to those used in the
silicon strip tracker. An ASIC that adapts the output levels of the pixel modules to those expected
by the laser driver has been added to the AOH of the pixel system. A clean identification of the six
levels used for encoding pixel addresses is crucial for the reconstruction of hits. The ratio of RMS
width to separation of the digitized levels after the full read-out chain is 1:30. The rise-time at the
digitizer input is 3 ns which makes corrections from previously transmitted levels negligible. The
full read-out chain adds a noise equivalent to 300 electrons to the analog pulse height, dominated
by baseline variations of the laser drivers.

Front End Driver

Optical signals from the pixel front end electronics (ROCs and TBMs) are digitized using the
pixel Front End Digitizer (pxFED). A pxFED is a 9U VME module. It has 36 optical inputs each
equipped with an optical receiver and an ADC. The ADC converts at LHC frequency supplied by
the TTC system which can be adjusted by an individually programmed phase shift (16 steps within
25 ns) for precise timing. A programmable offset voltage to compensate bias shifts can also be
set. The output of the 10 bit-ADC is processed by a state machine to deliver pixel event fragments
consisting of header, trailer, input channel number, ROC numbers, double column numbers and
addresses and amplitudes of hit pixels all at a subject-dependent resolution of 5 to 8 bits. Event
fragments are strobed into FIFO-1 (1k deep x 36 bit wide) which can be held on demand to enable
read-out via VME. In normal processing mode FIFO-1 is open and data of 4 (5) combined input
channels are transmitted to 8 FIFO-2 memories (8k x 72 bits). In order to determine thresholds
and levels required for the state machine, FIFO-1 can alternatively be operated in a transparent
mode making unprocessed ADC output data available. The output from FIFO-2 is clocked into
two FIFO-3 memories (8k x 72 bits) whose outputs are combined to provide the data now at a
frequency of 80 MHz (twice the common operating pxFED-frequency) to the S-Link interface
acting as a point-to-point link with the CMS-DAQ system. Parallel to the data flow spy FIFOs
are implemented (restricted in size) to hold selected event fragments and make them available for
checking data integrity. Error detection takes place in the data stream from FIFO-1 to FIFO-2 and
corresponding flags are embedded in the event trailer and also accessible from VME. A selected
DAC output from each ROC (on default representing the ROC’s temperature) is available as well.
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In addition, errors are directly transmitted to the CMS-TTS system using a dedicated connector
on the S-Link supplementary card. A histogramming feature has been implemented to monitor
the rate of double column hits. This histogram is intended to be read out via VME periodically to
check for dead or overloaded columns. The pxFED houses an internal test system which, when
enabled, replaces the normal ADC input by a pattern of 256 clocked analog levels simulating a
normal pixel event. There are three test DACs (10-bit) available to generate such a pattern meaning
that every third input channel receives the same simulated event. This test system allows to test
most of the features of the pxFED without the need of external optical input signals. All FIFOs, the
state machine with its adjustable parameters, the VME protocol, error detection and histogramming
features are integrated into several FPGAs mounted on daughter cards making the pxFED flexible
to changes and improvements. The corresponding firmware can be downloaded via VME or using a
JTAG bus connector mounted on the mother board. The whole pixel read-out system will consist of
40 pxFED modules (32 for the barrel and 8 for the forward) set up in three 9U VME crates located
in the electronics room. Individual modules can be accessed by VME geographical addressing.

Front End Controller

The Pixel Front End Controller (pFEC) supplies clock and trigger information to the front end, and
provides a data path to the front end for configuration settings over a fiber optic connection. The
pFEC uses the same hardware as the standard CMS FEC-CCS [28]. The firmware which defines
the behaviour of the mezzanine FEC (mFEC) module has been replaced by a pixel specific version,
converting the FEC into a pFEC. Each mFEC board becomes two command links to the front end.
The Trigger Encoder performs all trigger transmission functions, encoding TTC triggers to match
the pixel standard, block triggers to a given channel, generate internal triggers, either singly, or
continuously, for testing purposes. Within each command link are a one kilobyte output buffer for
data transmission, and a two kilobyte input buffer for data receiving. All data, whether write or
read operations, are retransmitted back from the front end for possible verification. To minimize
the VME data transfer time, the pFEC uses several data transfer modes. When transferring pixel
trim values to the front end, the pFEC calculates the row number information for a given column
of pixels on the fly. This results in nearly a 50% reduction in the time required to transfer trim
values over VME to a given command link buffer. In this way, the entire pixel front end trims can
be reloaded in 12 s. Another 2 s are used to load the other configuration registers, for a total of
14 s to reload the front end completely. This column mode is also the reason that the return buffer
is twice as big as the transmit buffer. The return buffer receives the row number as well as the
trim value for each pixel. Once data is loaded into an output buffer, the transfer may be initiated
either by computer control, or by a signal from the TTC system. Since single event upsets are
expected to occur in the front end registers, it is anticipated that periodic updates will be necessary.
Since updating the front end may disrupt data taking, it is preferable to perform small updates
synchronized to orbit gaps or private orbits. This is done through the TTC initiated downloads.
For transmission verification purposes, the number of bytes transmitted is compared to the number
of bytes returned from the front end. Also, the returning Hub/port address is compared to the
transmitted address. Status bits are set with the results of this comparison, and these values are
stored, for possible review, should an error condition occur.
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Figure 3.10: Block diagram of the Pixel front end control system. Note that the total number of
CCU nodes is 9 for the BPix and 5 for the FPix.

The detector front end control system

The CMS Pixel detector front end control system for both the barrel (BPix) and the forward (FPix)
detectors consists of four communication and control unit boards (CCU Boards). Each CCU board
controls a quarter of the detector with eight Barrel read-out sectors or twelve Forward port cards.
Figure 3.10 shows the block diagram of a CCU Board. The same ring topology configured as a
local area network as in the silicon strip tracker is used. The front end controller (FEC) module
is the master of the network and uses two optical fibers to send the timing and data signals to a
number of slave CCU nodes, and another two fibers to receive return communication traffic. The
two receiver channels on the digital optohybrid (DOH) transmit the 40 MHz clock and control
data at 40 Mbit/s in the direction from the FEC to the ring of communication and control units
(CCUs). The two transmitter channels send clock and data back to the FEC from the ring of
CCUs. The CCU is the core component developed for the slow control, monitoring and timing
distribution in the tracking system [29]. To improve system reliability against a single component
failure a redundant interconnection scheme based on doubling signal paths and bypassing of faulty
CCUs is implemented. An additional “dummy” CCU node allows to mitigate a single DOH failure
preserving complete functionality. A CCU node failure leads to a loss of communication to all
electronics attached to that CCU. The first two CCU nodes in the ring provide also the I’C data
channels necessary to control the digital optohybrids on the CCU boards.

In the BPix each read-out sector is controlled by a separate CCU node. Eight active and one
dummy CCU node build a single control ring. One I>C data channel is used to access and control
the front end read-out electronics and three output channels generate the necessary signals to reset
the digital and the analog optohybrids as well as the read-out chips (ROCs) in one read-out sector.
The FPix control ring consists of four active and one dummy CCU node. Each of the active CCU
nodes control 3 port cards, which constitute a 45° sector in the detector coverage at one end. A
connection between a CCU and a port card includes a bi-directional 100 KHz I?’C communication
channel and two reset signals. One reset signal is for the port card electronics, and the other one
goes to the read-out chips on the detector panels.
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Figure 3.11: Complete support structure half shell with the three detector layers.

3.2.4 The pixel barrel system

The pixel barrel system as installed inside CMS comprises the barrel itself, i.e. detector modules
mounted on their cylindrical support structure, as well as supply tubes on both sides. The barrel
with its length of 570 mm is much shorter than the Silicon Strip Tracker inside which it is installed.
Supply tubes carry services along the beam pipe from patch panels located outside of the tracker
volume to the barrel. The supply tubes also house electronics for read-out and control. The length
of the full system is 5.60 m. Support structure and supply tubes are split vertically to allow in-
stallation in the presence of the beam-pipe and its supports. Electrically the +z and —z sides of
the barrel are separated. Each side is divided in 16 sectors which operate almost independently,
sharing only the slow control system.

Pixel barrel support structure

The detector support structure for the three layers at the radii of four, seven and eleven centimeters
equipped with silicon pixel modules has a length of 570 mm ranging from —285 mm to +285 mm
closest to the CMS interaction region. Figure 3.11 shows a sketch of a complete support structure
half shell.

Aluminium cooling tubes with a wall thickness of 0.3 mm are the backbones of the support
structure. Carbon fiber blades with a thickness of 0.24 mm are glued onto the top or bottom of two
adjacent cooling tubes in such a way that their normal directions alternate pointing either to the
beam or away from it. The tubes have trapezoidal cross sections defined by the azimuthal angles
of the ladders they hold.

Four to five of these tubes are laser welded to an aluminium container which distributes the
cooling fluid. The resulting manifold provides the necessary cooling of the detector modules to
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Figure 3.12: Overview of a supply tube half shell.

about —10 °C with C¢F 4. Support frames on both ends, which connect the single segments, build
a complete detector layer half shell. These flanges consist of thin fibreglass frames (FR4) that are
filled with foam and covered by carbon fibre blades.

Printed circuit boards mounted on the the flanges hold the connectors for the module cables
and provide control signal fan-out and power distribution to the individual modules of a sector.

Pixel detector supply tube. The electrical power lines, the electrical control signal and the opti-
cal signals as well as the cooling fluid are transferred across the supply tubes to the pixel barrel. The
two supply tube parts of a half shell in +z and —z direction have a length of 2204 mm (figure 3.12).
The supporting elements of the basic structure are the stainless steel tubes with a wall thick-
ness of 0.1 mm running along the z-direction connected to the stiffener rings (FR4) and the inner
and outer flanges made out of aluminium. The tubes supply the detector with the cooling fluid.
The gaps in between are filled with foamed material with the corresponding shape to guarantee the
necessary rigidity. All power and slow control leads are embedded in the supply tube body. This
allows a clear layout of the wiring and also makes the system more reliable.
The motherboards, which hold the optical hybrids for the analog and digital control links, are
installed in the eight read-out slots near the detector on the integrated supply boards. The cor-
responding boards at the outer ends carry the power adapter boards, which provide the detector
power and the bias voltage for this sector. In the central slot the digital communication and con-
trol board (CCU Board) is installed. From here the digital control signals are distributed to the
individual read-out boards in each of the eight read-out sectors. Here also all slow control signals
like temperatures, pressures and the humidity are brought together and connected by the dedicated
slow control adapter board to the cables. The optical fibres are installed in the cable channels. The
36 single fibres for the analog read-out and the eight fibres for the digital control of the detector
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Figure 3.13: Exploded view (middle panel) of a barrel pixel detector full module (right panel) and
picture of an assembled half module (left panel).

modules will then be connected through the MUSR connector to the optical ribbon cable. These
adapters are mounted at the circumference in the first part of the supply tube. The length of each
supply tube is 2204 mm. Only a flexible mechanical connection is made between the barrel and
the supply tube.

Pixel barrel detector modules

The barrel part of the CMS pixel detector consists of about 800 detector modules. While the
majority of the modules (672) are full modules as seen in figure 3.13 on the right, the edges of the
six half-shells are equipped with 16 half-modules each (96 in total, see figure 3.13 on the left).

Geometry and components. A module is composed of the following components (figure 3.13).
One or two basestrips made from 250 pm thick silicon nitride provide the support of the module.
The front end electronics consists of 8 to 16 read-out chips with 52 x 80 pixels of size 100x 150 yum?
each, which are bumpbonded to the sensor. The chips are thinned down to 180 um . The High
Density Interconnect, a flexible low mass 3 layer PCB with a trace thickness of 6 um equipped
with a Token Bit Manager chip that controls the read-out of the ROCs, forms the upper layer
of a module and distributes signals and power to the chips. The signals are transferred over an
impedance matched 2 layer Kapton/copper compound cable with 21 traces and 300 pm pitch. The
module is powered via 6 copper coated aluminium wires of 250 yum diameter.
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Figure 3.14: Material budget of the pixel barrel in units of radiation length versus rapidity. The
plot does not contain contributions from the pixel support cylinder, the supply tube and cabling
from the detector end flange to the supply tube.

A completed full-module has the dimensions 66.6 x 26.0 mm?, weights 2.2 g plusupto 1.3 g
for cables, and consumes 2 W of power. The material of the pixel barrel amounts to 5 percent
of a radiation length in the central region. Sensors and read-out chips contribute one third of the
material while support structure and cooling fluid contribute about 50 percent. The distribution of
material as a function of pseudorapidity is shown in figure 3.14.

3.2.5 The forward pixel detector

The FPix detector consists of two completely separate sections, one on each side of the interac-
tion region. They are located inside the BPix supply tube but are mounted on separate insertion
rails. Each section is split vertically down the middle so the detector can be installed around the
beam-pipe and its vertical support wire and so it can also be removed for servicing during ma-
jor maintenance periods without disturbing the beam-pipe. Each of these four sections is called a
half-cylinder.

Mechanics of a half-cylinder

Each half-cylinder consists of a carbon fiber shell with two half-disks located at its front end, one
at 34.5 cm from the IP and the other at 46.5 cm. The half-disks support the actual pixel detectors
that extend from 6 cm to 15 cm in radius from the beam.

The half-disk has 12 cooling channels (each in the shape of a “U”’) assembled between a half
ring shown in figure 3.15. The assembly requires three slightly different types of cooling channels.
Each channel is made by Al-brazing two blocks of Al with the channel for the cooling fluid already
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Figure 3.15: The FPix half-disk cooling channels mounted in the outer half-ring structure. The
turbine-like geometry is apparent. Panels are mounted on both sides of the cooling channels.

machined in the two parts. The brazed parts are then machined to their final shape. The walls of
the channels are 0.5 mm thick. The average weight of the channels is 8.21 g.

All channels passed a Helium leak test at 1.33x 10~® mbar-litre/s. The pressure drop of the
individual cooling channels for a flow of 2600 sccm of dry Nj is 0.49 + 0.02 mbar. Six daisy-
chained cooling channels form a cooling loop. The pressure drop over a loop (for a flow rate of
1230 sccm) of dry N3 is 0.96 £0.13 mbar. For C¢F4 at —20°C with a rate of 12cc-s the pressure
drop is 294 mbar.

Each of the twelve cooling channels of a half-disk has trapezoidal beryllium panels attached
to each side. The panels support the sensors and read-out chips that constitute the actual particle
detectors. As explained above, the cooling channels are rotated to form a turbine-like geometry
to enhance charge-sharing. The panels are made of 0.5mm beryllium. The beryllium provides a
strong, stable and relatively low-mass support for the actual pixel detectors. The cooling channels
are supplied with CgF4 at about —15°C. A single cooling channel with panels mounted on both
sides forms a subassembly called a blade. There are 24 panels, forming 12 blades, in each half-disk.

Powering up the electronics on one blade increases the temperature by ~2°C. The tempera-
ture of each ROC is part of the information available for each event. Each panel also has a resistance
temperature detection sensor. The pixel sensors have fiducial marks visible with a coordinate mea-
suring machine (CMM). Their position is then related to reference marks mounted on the half-disk
units.

After installing the half-disks in the half-cylinder, the disk position is measured relative to
the half-cylinder using a CMM and also by photogrammetry. This permits relating the position
of the sensors to the CMS detector. The detector is surveyed at room temperature but operated at
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Figure 3.16: Overview of the Forward Pixel half-cylinder. A photograph of the portion of the first
production half-cylinder facing the interaction region (IR). The aluminium flange, the filter boards
(see below), and the CCU board are not shown. The half-cylinder is mounted in a survey fixture.
The carbon fiber cover at the end away from the IR protects the downstream components during
insertion of the beam pipe suspension wires that run through a slot in the half-cylinder towards the
left end of the picture.

about —10°C. The deformation (magnitude and direction) of the panels on a half-disk, when its
temperature changes from 20°C to —20°C has been measured to be 150 pum. This result has been
reproduced by a finite element analysis of the half-disk and it will be used in the final alignment
of the pixels. We anticipate knowing the pixel geometry to a few tens of microns before the final
alignment with tracks.

The service half-cylinder also contains all the mechanical and electrical infrastructure needed
to support, position, cool, power, control and read out the detector. In particular, it contains elec-
tronics for providing bias voltage to the sensors, power to the read-out chips, signals for controlling
the read-out chip via optical fibers linking it to the control room, and laser drivers for sending the
signals (address and energy deposition) off the detector to the data acquisition system. The service
half-cylinder also provides the path for cooling fluid necessary to remove the heat generated by the
sensors and read-out chips.

At the end of each service half-cylinder there is an annular aluminium flange that contains
holes to pass the power cables, cooling tubes, control and monitoring cables, and fiber optic read-
out from intermediate patch panels to the FPix detector. The electronics cards needed for the
operation of the detector are mounted on the inner surface of the half-cylinder. A picture of a
half-cylinder is shown in figure 3.16.
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Figure 3.17: Sketches of the two types of FPix panels showing the different sizes and numbers of
the plaquettes on each (left side). A photograph of an actual 3-plaquette panel (right side).

Forward pixel detection elements - the plaquettes

The basic unit of construction for the forward pixel detector is the plaquette. A plaquette consists
of a single pixel sensor bump-bonded to an appropriate number of Read-Out Chips (ROCs) and
wire-bonded to a very-high-density-interconnect (VHDI) that provides power, control, and data
connections.

In order to cover the trapezoidal or pie-shaped panels without leaving cracks, five different
sizes of plaquettes are needed. These are respectively 1x2, 2x3, 2x4, 1x5, 2x5, where the first
digit refers to the number of rows and the second to the number of columns of read-out chips that
are attached to a given sensor. The largest plaquette, the 2 x5, has dimensions of 16 mm x 35 mm.
The panels on the side of the cooling channel closest to the IP contain 1x2, 2x3, 2x4, and 1x5
plaquettes or a total of 21 ROCs. The panels on the side of the cooling channels farthest from the
IP contain 2x3, 2x4 and 2x5 type plaquettes with a total of 24 ROCs. The sensors are offset on
the upstream and downstream panels so that there are no cracks in the coverage due to the ROC
read-out periphery. The two types of panels are shown in figure 3.17. A total of 672 plaquettes are
needed.

The joining, or hybridization, of the pixel sensors and the pixel unit cells of the ROC is
achieved by fine-pitch bumping using Pb/Sn solder and then flip-chip mating. The bumping is
done on the 8” ROC wafers and the 4” sensor wafers. After bumping, the ROC wafers are thinned
by backside grinding to 150 tm and then diced. Finally, each of the 5 different types of sensors are
mated to the appropriate number of ROCs. The sensor with its ROCs bump-bonded to it is called
a module. For FPix, the hybridization was done in industry. The fraction of broken, bridged, or
missing bumps is at the level of a few 1073,

After delivery from the vendor, the bump-bonded pixel detector module is then installed on
a Very High Density Interconnect (VHDI). The VHDI is a two-layer flexible printed circuit, lam-
inated to a 300 um thick silicon substrate, whose trace geometry and characteristics (impedance,
low intrinsic capacitance, and low cross-talk) have been optimized for the intended use of convey-
ing digital control and analog output signals to and from the sensors and ROCs.
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The VHDI is made as follows. A bulk 6 silicon wafer is laminated to a flexible sheet con-
taining several VHDI circuits. Passive components are also attached using surface-mount solder
techniques. The wafer of populated circuits is then diced into individual circuits using a diamond
saw. The circuits are then electrically tested.

The hybridized pixel module is attached and wire bonded to a populated VHDI to become a
plaquette. The joining is made using parallel plate fixtures aligned on linear rails. The alignment
of components is inspected using a coordinate measuring machine. A flexible plate is used for
fine adjustments on the fixtures resulting in alignments between joined components within 100
um. The adhesive bond between plaquette components is made in a vacuum at 60°C, to soften
the adhesive and prevent air entrapment. An air cylinder applies and controls the mating pressure,
which is limited by the compression allowed on the bump-bonds.

The effects of thermal cycling and radiation on the assembled plaquettes have been exten-
sively tested. The tests demonstrate that the adhesive and the application method mitigate warping
due to temperature changes, and provide reliable strength and thermal conductivity.

Once plaquettes are mechanically joined, they are clamped in cassettes that accommodate
all processing steps such as wirebonding which provides electrical connections between the ROCs
and the VHDI. After wirebonding we encapsulate the feet of wirebonds. This encapsulation is
necessary due to periodic 1dl x B forces expected to occur during actual CMS operation. The
encapsulant acts as a damping force on the wire, preventing large resonant oscillations to work
harden the wire and cause eventual breakage [30]. Finally the plaquettes undergo quick testing
at room temperature. During this test the quality of the plaquettes is evaluated in terms of the
characteristics of the sensor, the read-out chip, the number of bad pixels and missing bonds. The
assembly and testing rate is optimized for a rate of six plaquettes per day.

The completed plaquettes are subjected to a quick plug-in test. Then they are loaded into a
Burn-In Box where they undergo 10 temperature cycles between 20°C and —15°C. These cycles
can take up to 2 days to complete, depending upon the thermal load. During these cycles, the
plaquettes are monitored for electrical operation. We have seen no failures during the cycling.
After the burn-in process is completed, the plaquettes are subjected to a series of electrical tests
to ensure their suitability for their eventual mounting on a panel. These tests, at the operating
temperature of —15°C, include the functionality of the ROC, the integrity of the bump-bond, and
the I-V characteristics of the sensor. Other tests measure the thresholds and noise characteristics
of each pixel on the entire plaquette assembly, and the individual pixel thresholds are trimmed via
the ROC capability. We have found that the pixel trim values from the plaquette test on each pixel
remain valid even after subsequent steps of the assembly process. After testing the plaquette data
is loaded into the Pixel Construction Database and the plaquettes are graded. We have three main
categories of grades:

* A - the plaquette is available for immediate mounting on a panel;
* B - potential issues have been found during testing and need further analysis;
* C - the plaquettes are unsuitable for mounting.

The data on each B-grade plaquette are examined carefully. In many cases, the plaquettes
are found to have missed being classified as A-grade due to very minor deficiencies (e.g. slightly
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Figure 3.18: Sketch of a plaquette mounted on a panel showing its several layers.

too many noisy pixels) which will not be significant when an entire panel’s quality is assessed.
These are “promoted” to A-grade and declared usable on panels. Current plaquette yields, based
on an original grade of A or a promotion to A-grade from B, are in the 80% range, varying slightly
according to plaquette size.

Panel assembly

A panel is formed from three or four plaquettes attached to an assembly of a High Density In-
terconnect (HDI) laminated to a beryllium plate. The HDI is a three-layer flexible printed circuit
whose trace geometry and characteristics (impedance, low cross-talk) have been optimized for the
intended use of transferring digital control and analog output signals.

The process by which a panel is assembled is as follows. A single HDI circuit is laminated to
a trapezoidal-shaped 0.5 mm thick beryllium plate. Passive components are attached using surface-
mount solder techniques. The Token Bit Manager (TBM) is attached to the corner tab of the HDI
using a die attach method and wire-bonding. After functional and burn-in tests with only the TBM,
the individual plaquettes are attached to the HDI using adhesive for mechanical attachment and
wire-bonds for electrical connection.

There are four types of panels, a right and left 3-plaquette version, and a right and left 4-
plaquette version. The right and left handed versions have their TBMs on opposite sides of the
panel centerline. Both types are required so that no panel part projects past a line in the vertical
plane. The reason for the “3” and “4” type panels is that they are eventually mounted on opposite
side of a blade, and the gaps between plaquettes on one type are covered by the active area of the
other.

A panel is built up out of several layers of components. These are shown in figure 3.18. The
total number of panels in all eight half-disks is 192.

Final detector assembly validation

The panels are attached onto the front and back of the half-disk cooling channels. The 4-plaquette
panels are mounted on the side closest to the interaction region (IR), and the 3-plaquette versions
on the opposite side. The half-disk assembly is mounted onto the half-service cylinder and is again
tested.
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Electronics chain

Each HDI is connected to another flexible printed circuit board, the adapter board. Each adapter
board serves three blades (or 6 panels). One important purpose of the adapter board is to send and
receive signals from the panels, which are mounted perpendicular to the axis of the service cylinder
to and from the electronics mounted on the inner surface of the service cylinder. This is done by a
pigtail at the end of each panel that plugs into connectors on the fingers of the adapter board.

The adapter board has three types of ASICs mounted on it. These are used to pass the clock,
trigger and control data signals to each panel and return the received control signals back to the
pFEC.

The adapter board is connected to another printed circuit board, the port card, by a light-
weight extension cable. These cables are of two types, a power cable which distributes the power
to the ROCs and TBMs, and the HV bias to the sensors. The other cable is to transmit the pixel
data and control signals to the panel from the port card. The port card is a low-mass printed circuit
board. It houses the electronics needed to interface the front-end chips with the VME electronics
(the pFEC and pxFED) and power supplies located in the counting room. The port card transmits
the clock signal, L1 trigger and slow control signals to the front end electronics. It distributes the
power and bias voltages to the chips and sensors. It also monitors the currents and voltages as well
as the temperature on some panels. These functions are done by various ASICs that are common
to the CMS tracker. These ASICs include the DCU for monitoring, the TPLL for regenerating the
trigger and timing signal, the gatekeeper for keeping the optical up and down links open as needed.

To control and monitor the various ancillary chips and optohybrids, there is a CCU board for
each half service cylinder, as described above.

The port card contains the Analog Optohybrid (AOH). Each of the 6 laser diodes of the AOH
chip receives data from one panel via its TBM and sends it over its own optical fiber to the Front
end Driver (FED).

The control of the ROCs is achieved through the Pixel Front End Controller. Optical signals
are sent from it to the Digital Optohybrids on the port card, through the extension cables to the
adapter board, then to the TBM on the panel, through the HDI and the VHDI to the ROCs.

Power and monitoring

Power connections are made from CAEN power supplies via cables that run through the flange at
the end of the half-cylinder away from the IR into a set of power/filter boards. From these boards,
it is sent along wires to the port card, in the case of low voltages, and directly to the adapter board
in the case of the sensor bias voltage.

Monitoring points for temperature are distributed throughout the service cylinder. There are
also humidity sensors. Additional temperature sensors are mounted on the panels. High and low
voltage and detector monitoring are connected to the DCS system described below.

Testing

Testing is a key element of quality assurance in the assembly process. While rework is possible, it
is difficult and error prone. At every step, we confirm that we are using only “known good parts”.
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Testing must keep up with the driving assembly step, plaquette production. Full characterization
of a plaquette requires hundreds of thousands of measurements. To accomplish this, we have
developed special read-out hardware and software that can carry out these measurements quickly
and efficiently. A software using a USB-based data acquisition scheme is employed when flexibility
is needed to develop measurement programs of modest complexity and duration, such as the burn-in
procedure. For the most extensive measurements, including plaquette testing and characterization,
we use a PCI-based system and a software program called Renaissance [31].

Final testing is performed using the real data-acquisition and control hardware and prototype
data-acquisition software and constitutes an end-to-end system test. Detailed testing also estab-
lishes an initial set of parameters for the many DACs and thresholds in the system.

3.2.6 Power supply

All needed high and low DC voltages are generated by means of a commercial modular system
of the type CAEN-EASY4000 . This system is also employed by the CMS silicon strip tracker
for which the main regulating cards (A4601H) were custom designed [32]. Only small changes in
hard- and firmware were necessary for adaptation to the pixel project.

The core of this system, accessed through LAN, is located in the detector control room
(USC55) and consists of one main controller (SY1527) containing 3 branch controllers (A1676A).
The actual power supply cards are placed in two racks of 5 crates in close proximity to the detector
thanks to their radiation tolerance and magnetic field resistance. This has been chosen in order to
reduce power loss in the cables. The power supply crates are connected by flat cables (= 100 m) to
the branch controllers. They are fed by local 3-phase 230 V o¢ to 48 Vpc master converters of each
2kW (A3486H) also suited for operation at hostile environments.

The crates house two types of electronic cards, one of 4 channels of 2.5 V/7 A (A4602)
feeding the service electronics on the supply tubes (auxiliary power), while the other (A4603H)
deliver 2 complex channels of each 2 low (1.75V/7 A and 2.5 V/15 A) and 2 high voltage lines
(—600 V/20mA) for ROC and sensor biasing respectively. Each of these channels contains float-
ing pulse-width-modulated DC/DC switching transformers with a common ground return for the
1.75 and 2.5V lines. The isolation resistance (ground return versus earth on the racks) is typically
100 Q at 5 MHz. Every card is controlled by an optically decoupled microprocessor for setting and
measuring voltages, currents, ramp times, trip parameters, interlocks and others.

The DC levels are regulated over sense lines. The reaction time of the sensing circuit (typi-
cally 200 ts) is subject to fine tuning to comply with capacitive load, cable impedance and length
(typically 50 m). The line drop in the cables amounts to roughly 2V, while the regulators would
allow for a maximum of 6 V. Fourteen A4602 cards, yielding 40 independent channels of auxiliary
power, feed the 32 slots of the barrel service tubes with each 2 DOHs and 6 AOHs as well as 4
groups of each 12 port cards of the forward half disks. The main supplies of 112 complex LV and
HYV channels (56 A4603H cards) feed the 64 barrel groups (192 ROC:s, this contains groups with
half size modules) of each 12 detector modules, and 48 forward groups (135 ROCs) of each 3 disk
blades. Each of these groups draws a typical current of 4.6 A on the analogue (1.75 V) and 9 A on
the digital (2.5 V) line respectively. The large current reserve of the supplies is needed to comply
with conditions during bootstrapping where the ROCs remain briefly in an undefined state. It was
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verified that the regulators undergo a smooth transition from the constant-voltage to the constant-
current regime if the programmed current limits are approached. Beside microprocessor controlled
actions (1 s) fast over-current security is guaranteed by various solid state fuses (10 ms) as well as
crowbars (100 uts) for over-voltage.

Noise levels are typically 5 mVp, on the LV and 50 mV,,, on the HV outputs which can easily
be accepted thanks to the LV regulators in the ROCs and the intrinsically small sensor capacitances
respectively. Of major concern in the overall design were fast drops in the digital current con-
sumption (2.5 V line) in case of low ROC activity like in orbit gaps. Due to the cable inductance
a typical current drop of 2 A per group generates over-voltage spikes at the module level in the
order of some Volts depending on local buffer capacitors. The integrity of the cable-module-ROC
circuit was therefore checked by a full simulation in SPICE together with measurements on pulsed
current loads. This served for the designs of the cables and the electronic layout, e.g. grounding
or HV distribution. (In one sector layer-1 modules are fed by one line while layer-2,3 modules
are commonly fed by the other.) Finally a 6x4 mm? shielded copper cable was chosen for the
40 m from the power supply cards to the patch panel (PP1) located in the HCAL with alternating
current directions between adjacent lines. Two twisted pair lines for the senses and a bunch of 10
commonly shielded lines for HV are contained in the same cable complex (0.1 mm?).

Inductance, capacitance and characteristic impedance between two of the main lines were
measured to be 6 uH/m, 0.13 nF/m and 24 Q respectively. The 4 m connection between PP1 and
PPO (tracker bulkhead) uses Al conductors in the cable. The auxiliary power cable is also shielded
and contains 26 x0.75 mm? and 4 twisted pair copper lines with 0.1 mm? for the sense wires.

3.2.7 Cooling

The power consumption per pixel amounts to around 55 uW, including about 13 uW from the
sensor leakage current at final fluences of 6x10'4/cm?. For the total of ~ 66 million pixels this
adds up to 3.6 kW. The power load on the aluminium cooling tubes is therefore expected to be about
50 W/m. The sensor temperature will be maintained at around —10°C. As for the strip detectors,
liquid phase cooling with CgFj4 is used. To keep the temperature increase of the coolant below
2°C, a total flow rate of 1 litre/s is required.

The pixel system is cooled by a total of 18 cooling loops: 10 for the barrel and 4 for each of
the two end disk systems. For the barrel, the coolant enters at +z and exits at —z, or vice versa.
The coolant for the two disk sets on each side of the interaction region is supplied and reclaimed
from the same z side. One barrel loop feeds in parallel 9 thin-walled aluminium pipes, each cooling
8 modules in series. One disk loop cools in parallel one quarter of each of the 2 disks; inside the
quarter disks the 6 blade loops are connected serially. The coolant flow at the pixel modules is
turbulent. The total lengths of the cooling loops starting from and returning to the pixel cooling
rack amount to about 80 m, resulting in pressure drops of below 2 bar.

3.2.8 Slow controls

The safe operation of the barrel and forward pixel detectors is guaranteed by the CMS Pixel slow
controls system (DCS). Its tasks are to monitor temperatures and humidities at different locations
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of the detector and to monitor and control the high and low voltages necessary for operation of the
on-detector electronics.

The monitoring of temperatures and humidities is based on a commercial Siemens S7-300
modular mini Programmable Logic Controller (PLC) system. The Siemens S7-300 system mon-
itors a total of 192 temperature and 8 humidity sensors installed in the Pixel barrel and forward
endcap disks. For the temperature sensors, platinum resistance temperature detection sensors with
a nominal resistance of 1 kQ (Pt1000 RTD) have been chosen. The measurement of humidity is
based on detecting the water vapor induced shear stress in a small polymer element that is con-
nected to a Wheatstone Bridge piezoresistor circuit [33]. This circuit provides a small (mV) output
signal that is linearly proportional to relative humidity (RH) between the full range of 0% to 100%
RH and is amplified by the same kind of conditioning electronics that is used by the silicon strip
tracker. The PLC of the Siemens S7-300 system is programmed in the Statement List (STL)
language [34] to convert the currents and voltages of the temperature and humidity sensors into
calibrated physical units (i.e. degrees Celsius for temperatures and percentages for humidities).
For the purpose of avoiding damage to the detector in case the cooling system (dry air supply)
fails, routines are programmed within the PL.C to interlock the CAEN power supplies (shut-off the
cooling) in that case.

An additional 96 Pt1000 temperature sensors are read out via the data-acquisition (DAQ)
system, together with the temperature dependent voltage sources integrated into each one of the
pixel read-out chips. The temperatures recorded by the DAQ system are passed to the slow controls
system by means of a dedicated software interface [35].

The Barrel and Forward Pixel slow controls system is integrated into the PVSS graphical user
interface (chapter 9) of the main CMS DCS.

3.3 Silicon strip tracker

3.3.1 Silicon sensors

The sensor elements in the strip tracker are single sided p-on-n type silicon micro-strip sen-
sors [36, 37]. They have been manufactured on 6 inch wafers in a standard planar process, leading
to significant cost reduction per unit area when compared to the more traditional 4 inch wafers.
The base material is n doped float zone silicon with (100) crystal orientation. This crystal ori-
entation was preferred over the more common (111) orientation because measurements [38] have
shown that the built-up of surface charge on (100) wafers due to irradiation is much smaller and
consequently irradiation causes less inter-strip capacitance increase on this material.

In TIB/TID and on the inner 4 rings of the TECs (figure 3.1), thin sensors of (320 4+20) um
wafer thickness are used, with substrate resistivity of p = 1.55 —3.25kQcm. TOB and the outer
3 rings of the TECs are equipped with thicker sensors of (500 4 20) um thickness, with substrate
resistivity of p =4 —8kQcm. Due to the single sided processing, these sensors show a significant
bow, which is required to be less than 100 tm.

A uniform nt implantation on the back side of the wafers, covered by aluminium, forms an
ohmic contact which is connected to positive voltage up to about 500 V. Those sensors which are
penetrated by the beams of the laser alignment system (section 3.3.7) feature a 10 mm hole in the
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back side metalization, as well as anti-reflective coating in order to achieve transmission through
up to four sensors with a sufficient signal on a fifth sensor.

On the front side, strip shaped diodes are formed by p™ implantation into the n type bulk.
Due to the radiation damage to the crystal lattice, the bulk material will undergo type inversion and
change to p type. At this point, the pn junction moves from the strip side of the wafer to the rear
side contact. Each implanted strip is covered by an aluminium strip from which it is electrically
insulated by means of a silicon oxide and nitride multilayer. This integrated capacitor allows for AC
coupling of the signals from the strips to the read-out electronics, which is thus protected from the
high leakage currents after irradiation. Each metal strip has two bond pads on each end, which are
used to make a wire bond connection to the read-out chip and in case of the daisy chained sensors
to make a wire bond connection between the two sensors in one detector module. For testing
purposes there is also a DC pad connected to the p* implant. Each strip implant is connected via a
(1.540.5) MQ polysilicon bias resistor to a p™ bias ring which encloses the strip region and also
defines the active area of the sensor.

For all sensors in the CMS strip tracker the ratio of p* implant width over strip pitch is
w/p=0.25, leading to a uniform total strip capacitance per unit length of about 1.2 pF/cm across all
sensor geometries [38]. The actual w/ p value was chosen in order to minimize the strip capacitance
while still maintaining a good high voltage behaviour of the sensor. The aluminium strips feature
a metal overhang of 4 to 8 um on each side of the strip which pushes the high field region into the
silicon oxide where the breakdown voltage is much higher, leading to stable high voltage operation.
For the same reason, the bias ring is surrounded by a floating guard ring p™ implant. It gradually
degrades the electric field between the n* implant at the cut edge of the sensor and the bias ring,
which are at backplane potential (high voltage) and ground, respectively. Figure 3.19 shows the
layout of a corner of the active region of a sensor.

In order to equip all regions in the CMS tracker, 15 different sensor geometries are
needed [36] (figure 3.19): two rectangular sensor types each for TIB and TOB, and 11 wedge-
shaped sensor types for TEC and TID. They have either 512 or 768 strips, reflecting the read-out
modularity of 256 channels (two 128-channel front-end chips multiplexed to one read-out channel).
Since the sensors are fabricated on 6 inch wafers, they can be made rather large. Typical dimen-
sions are for instance about 6 x 12cm? and 10 x 9cm? in the inner and outer barrel, respectively.
The total number of silicon sensors in the strip tracker is 24 244, making up a total active area of
198 m?, with about 9.3 million of strips [36].

3.3.2 Read-out system

The signals from the silicon sensors are amplified, shaped, and stored by a custom integrated cir-
cuit, the APV25 [39]. Upon a positive first level trigger decision the analogue signals of all chan-
nels are multiplexed and transmitted via optical fibers to Front End Driver (FED) boards in the
service cavern where the analogue to digital conversion takes place. This read-out scheme brings
the full analogue information to a place where it can be used for accurate pedestal and common
mode subtraction as well as data sparsification. Clock, trigger, and control signals are transmitted
by optical links as well. A schematic view of the silicon strip tracker read-out scheme is given in
figure 3.20. This analogue read-out scheme was chosen for several reasons: optimal spatial reso-
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Figure 3.19: Left panel: drawing of one corner of the active region of a wedge-shaped silicon
strip sensor for the tracker endcaps. Right panel: silicon sensor geometries utilized in the CMS
tracker. In the outer layers the sensors are paired to form a single module, as shown in the figure.
The Inner Barrel and Outer Barrel sensors exist in two types, of same area and different pitch. The
sensors utilized for the first inner ring exist in two different versions, one for TID and one for TEC,
respectively. (Only the TEC version is shown.)
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Figure 3.20: Read-out scheme of the CMS tracker.

lution from charge sharing, operational robustness and ease of monitoring due to the availability
of the full analogue signal, robustness against possible common mode noise, less custom radiation
hard electronics and reduced material budget as the analogue to digital conversion and its power
needs are shifted out of the tracker volume.
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Front-end ASICs

The APV25 has been designed in an IBM 0.25 um bulk CMOS process. Compared to processes
with bigger feature sizes, the thin gate oxide inherent to this deep sub-micron process is much less
affected by radiation induced charge-up and thereby, in conjunction with special design techniques,
ensures radiation tolerance [40]. The APV25 has 128 read-out channels, each consisting of a low
noise and power charge sensitive pre-amplifier, a 50ns CR-RC type shaper and a 192 element
deep analogue pipeline which samples the shaped signals at the LHC frequency of 40MHz. This
pipeline is used to store the data for a trigger latency of up to 4 us and to buffer it. A subsequent
stage can either pass the signal as sampled at the maximum of the 50ns pulse (peak mode) or form
a weighted sum of three consecutive samples which effectively reduces the shaping time to 25ns
(deconvolution mode). The latter is needed at high luminosity in order to confine the signals to the
correct LHC bunch crossing. The pulse shape depends linearly (linearity better than 5%) on the
signal up to a charge corresponding to 5 minimum ionizing particles (MIPs, one MIP is equivalent
to 25 000 electrons in this case), with a gradual fall off beyond. When a trigger is received, the
analogue data from all 128 channels of the appropriate time slice in the pipeline are multiplexed and
output at a rate of 20 MS/s (mega-samples per second) as a differential bi-directional current signal,
together with a digital header. Due to the tree structure of the analogue multiplexer the order in
which the channels are output is non-consecutive and therefore re-ordering is necessary prior to the
actual data processing. An internal calibration circuit allows to inject charge with programmable
amplitude and delay into the amplifier inputs in order to be able to monitor the pulse shape.

The APV25 needs supply voltages of 1.25 V and 2.5 V with a typical current consumption
of about 65 mA and 90 mA respectively, leading to a total power consumption of typically around
300 mW for one APV25 or 2.3 mW per channel. The noise of the analogue read-out chain is
dominated by the front end MOSFET transistor in the APV25. Measurements have shown that
the total noise for an APV25 channel depends linearly on the connected detector capacitance Cge;.
The equivalent noise charge is found to be ENCpeax = 270e + 38¢/pF - Cyger in peak mode and
ENClecony = 430e +61e/pF - Cyet in deconvolution mode, both measured at room temperature [39].
Mainly due to the MOSFET characteristics, the noise reduces with temperature approximately as
ENC ~ +/T. Therefore, the noise at operating temperature is about 10% lower.

More than 100 APV25 chips from all production lots have been irradiated with X-rays to
10 Mrad ionizing dose, in excess of the expectation for 10 years of LHC operation. No significant
degradation in pulse shape or noise level has been observed.

The APV2S5 is fabricated on 8 inch wafers with 360 chips per wafer. More than 600 wafers
corresponding to 216 000 chips have been manufactured and probe-tested. After initial yield prob-
lems were solved, an average yield of 88% was achieved.

Another custom ASIC, the APVMUX, is used to multiplex the data streams from two APV25
chips onto one optical channel by interleaving the two 20 MS/s streams into one 40 MS/s stream,
which is then sent to a laser driver of the optical links. One APVMUX chip contains 4 such
multiplexers.
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Optical links

Analogue optical links are used to transmit the data streams from the tracker to the service cavern
over a distance of about 100 m at 40 MS/s. Likewise, the digital timing and control signals (see
below) are transmitted by digital optical links running at 40 Mb/s [41]. Optical links are superior to
an electrical distribution scheme mainly since they have minimal impact on the material budget and
are immune to electrical interference. The transmitters are commercially available multi-quantum-
well InGaAsP edge-emitting devices, selected for their good linearity, low threshold current and
proven reliability. Epitaxially grown planar InGaAs photo-diodes are used as receivers. The optical
fiber itself is a standard, single-mode, non dispersion shifted telecommunication fiber. The fibers
are grouped in ribbons of 12 fibers which in turn are packaged in a stack of 8 inside a 96-way
ribbon cable, which features a small diameter (< 10mm) and a low bending radius (8 cm). For the
analogue data link up to three transmitters are connected to a laser driver ASIC on an Analogue
Opto-Hybrid (AOH), one of which sits close to each detector module. The electrical signals from
the APVMUX are transmitted differentially over a distance of a few centimeters to the laser driver,
which modulates the laser diode current accordingly and provides a programmable bias current to
the diode. For the bi-directional digital optical link a set of two receivers and two transmitters is
mounted on a Digital Opto-Hybrid (DOH), converting the optical signals to electrical LVDS [42]
and vice versa.

Front End Drivers

The strip tracker Front End Driver (FED) is a 9U VME module which receives data from 96 optical
fibres, each corresponding to 2 APV25 or 256 detector channels [45]. All 96 fibres are processed
in parallel. The optical signals are converted to electrical levels by opto-receivers [43] and then
digitized by a 40MHz, 10 bit ADC. The ADC sampling point for each fibre can be programmed
independently in 1 ns steps. After auto-synchronization to the APV data stream, pedestal correc-
tions are applied and the common mode subtracted. The common mode correction is calculated
for each trigger and each APV separately. The samples are then re-ordered to restore the physical
sequence of detector channels which is essential for the following step of cluster finding. Pedestal
values for each detector channel and thresholds for cluster finding are stored in look up tables. The
digital functionality of the FED is implemented in FPGAs and can therefore be adjusted with con-
siderable flexibility. In zero suppression mode, which is the standard for normal data taking, the
output of the FED is a list of clusters with address information and signal height (8-bit resolution)
for each strip in the cluster, thus passing to the central DAQ only those objects which are relevant
for track reconstruction and physics analysis. In this way an input data rate per FED of about
3.4 GB/s, at LHC design luminosity, is reduced to roughly 50 MB/s per percent strip occupancy.
Other modes are, however, available which suppress one or more steps in the processing chain and
therefore transmit additional data to the central DAQ to be used mainly for debugging and system
analysis. There are a total of 450 FEDs in the final system.
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Control and monitoring

Clock, trigger and control data are transmitted to the tracker by Front End Controller (FEC)
cards [44]. These are VME modules, located in the service cavern, as close as possible to the
tracker in order to reduce trigger latency. They receive clock and trigger signals from the global
Timing Trigger and Command (TTC) system and distribute those as well as control signals via dig-
ital optical links and the digital opto-hybrids to LVDS token ring networks (control rings) inside
the tracker volume. Several Communication and Control Units (CCU) [46] participate in one token
ring. These are custom ASICs which interface the ring network to the front-end chips. One CCU
is mounted on a Communication and Control Unit Module (CCUM) and is dedicated to a set of
detector modules. A combined clock and trigger signal is distributed to Phase Locked Loop (PLL)
chips [47] on each detector module while the industry standard I?C protocol [48] is used to send
control signals to the APV chips as well as to the other ancillary chips. One CCU can control up to
16 units so that one FEC ring typically controls a set of several tens of detector modules. The PLL
chips decode the trigger signals and provide a very low jitter, phase adjustable clock signal to the
local electronics.

Detector Control Unit (DCU) ASICs [49] on the detector modules are used to monitor the
low voltages on the hybrid, the silicon sensor leakage current, and the temperatures of the silicon
sensors, the hybrid and the DCU itself. For this purpose, each DCU contains eight 12 bit ADCs.
The DCUs are read out through the control rings and digital links so that these readings are only
available when the control rings and the detector modules are powered.

Hybrids

The front-end read-out electronics for a detector module is mounted onto a multi chip module
called hybrid [50]. Due to the different detector module geometries 12 different types of hybrids
are needed in the CMS silicon strip tracker. Each hybrid carries 4 or 6 APV25 read-out chips
which are mounted as bare dies, and one APVMUX chip, one PLL chip and one DCU chip which
are packaged components. The main features of the hybrid are to distribute and filter the supply
voltages to the chips, to route clock, control and data lines between the chips and to remove the heat
from the chips into the cooling system. No high voltage is present on the CMS tracker hybrids. The
hybrid substrate is fabricated as a four layer polyimide copper multilayer flex circuit (figure 3.21).
It is laminated onto a ceramic (Al,O3) carrier plate using double sided acrylic adhesive. A poly-
imide cable is integrated into the layout of the hybrid. The minimal feature sizes are 120 wm for via
diameter and line width. Large metalized through holes under the chips transfer the heat to the un-
derlying ceramic plate, from where it is removed through the frame of the module into the cooling
system. Three different flex circuit types (one each for TIB/TID, TOB and TEC) combined with
different geometries of the ceramic plates, different connector orientations and different number of
APV?25 chips (4 or 6) make up the total of 12 different hybrid flavours.

Power supplies

Silicon strip modules are grouped into 1944 detector power groups in order to share the power
services. Each group is supplied by a power supply unit (PSU) [32], featuring two low-voltage
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Figure 3.21: Front-end hybrid layout (example for TEC shown on the left) and arrangement of
layers.

regulators, respectively 1.25 V (up to 6 A) and 2.5 V (up to 13 A), and two high-voltage regu-
lators (0-600 V, up to 12 mA). All regulators are “floating” (return line isolated from the local
earth). The two low-voltage channels share the same return line and use the sensing wire tech-
nique to compensate, up to 4 V, the voltage drop along the cables. The two high-voltage regulators
are fanned out at the PSU exit into 8 lines; each silicon strip sensor is connected to one of these
lines. Two PSU are combined into one power supply module (PSM, A4601H model). In total
984 A4601H boards are needed to power the detector groups; they are located on 129 EASY 4000
crates, disposed on 29 racks, around 10 m away from the beam crossing region, and operate in a
“hostile” radiation and magnetic field environment, powering the detector through ~ 50-m-long
low impedance cables [32]. The 356 control rings require a separate power at 2.5 V. This is pro-
vided by a different set of 110 control power supply modules (A4602, four 2.5 V channels per
module), fully integrated in the same system of the A4601H units and located on the same crates.
Both A4601H and A4602 units require two distinct 48V power sources, one source (48Vp) for the
regulators, the other (48Vs) for the service electronics. They are both provided by AC-DC convert-
ers, CAENs A3486 (“MAOQO”), disposed on the same racks. Each EASY 4000 crate hosts up to 9
boards (A4601H mixed to A4602) and provides 48Vp and 48Vs rails, interlock and general reset
bus lines. The first slot in the crate (slot 0) hosts one interlock-card, which interfaces the interlock
and reset lines to the control and safety systems (section 3.3.8). The average power consumption of
each silicon strip module with 6 (4) APV25 chips is about 2662 mW (1845 mW). The total power
supplied by A4601H and A4602 boards is approximately 68 kW, of which nearly 50% is dissipated
on power cables. The power consumption is foreseen to increase with the aging of the detector; the
power supply system is dimensioned to cope with up to 60% increase of the low-voltage currents,
corresponding to a total consumption of nearly 150 kW.
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Figure 3.22: Left panel: exploded view of a module housing two sensors. Right panel: photograph
of a TEC ring 6 module, mounted on a carrier plate.

3.3.3 Silicon modules
Module design

The silicon strip tracker is composed of 15 148 detector modules distributed among the four differ-
ent subsystems (TIB, TID, TOB, TEC). Each module carries either one thin (320 um) or two thick
(500 pm) silicon sensors from a total of 24 244 sensors. All modules are supported by a frame
made of carbon fiber or graphite, depending on the position in the tracker. A Kapton circuit layer
is used to insulate the silicon from the module frame and to provide the electrical connection to the
sensor back plane, i.e. bias voltage supply and temperature probe read-out. In addition the module
frame carries the front-end hybrid and the pitch adapter. Figure 3.22 shows an exploded view and
a photograph of a TEC module.

Modules for the inner barrel, the inner disks and rings 1 to 4 in the endcaps are equipped with
one sensor, modules in the outer barrel and rings 5 to 7 in the endcaps have two sensors. In the case
of two sensors, their corresponding strips are connected electrically via wire bonds. Depending on
the geometry and number of sensors the active area of a module varies between 6243.1 mm? (TEC,
ring 1) and 17202.4 mm? (TOB module). In total 29 different module designs, 15 different sensor
designs and twelve different hybrid designs are used in TIB, TOB, TID and TEC. For alignment
purposes special modules are prepared with etched holes in the aluminium back plane to allow a
laser ray to traverse up to five modules.

The module frame provides the stability, safety and heat removal capability needed in the
sensor support and carries the read-out electronics. In addition it has to remove the heat generated
in the electronics and the silicon sensor(s) into the cooling points. In the endcaps the frame for the
one-sensor modules is U-shaped and made of (780+5) pm thick graphite (FE779 carbon). For the
two-sensor modules a similar U-shaped support structure is obtained by gluing two (6404+40) um
thick carbon fiber legs (K13D2U CFC, 5 x 125 um fabric, cyanate ester resin (CE3)) on a 800 um
thick graphite cross-piece (FE779 carbon) which holds the front end electronics. In the inner barrel
a 550 pum thick carbon fiber frame that surrounds the silicon sensor on all sides is used . For
the TOB, U-shaped module frames are obtained by gluing two carbon fiber legs (K13D2U CFC,
5 x 125 um fabric, cyanate ester resin (CE3)) on a carbon fiber cross piece made of the same
material.
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Both graphite and carbon fiber fulfil the requirements of high stiffness, low mass, efficient
heat removal from the sensors, and radiation hardness. Differences in the expansion coefficients
need to be compensated by the glue joint between the frames and the silicon. Several types of glues
are used in module construction which all comply with the requirements of radiation hardness,
good thermal conductivity and thermal stability. Among them are e. g. Epoxy AW 106 (Araldit,
Novartis), silicone glue RTV 3140 (Dow Corning) to compensate for different thermal expansion
coefficients and the conductive glue EE 129-4 (Polytec) between the silicon sensor back plane and
the HV lines on the Kapton bias strips (see below).

Different types of aluminium inserts and precision bushings in the module frames are used
to position and attach the modules to the larger support structures with high precision. TIB/TID
and TEC modules are mounted using four points, two being high precision bushings that allow
for a mounting precision of better than 20 um while all four provide thermal contact between the
module and the cooling pipes. For TOB modules two Cu-Be springs give the precision positioning
and four screws ensure thermal contact.

The high voltage supply to the silicon back plane is provided by Kapton bias circuits running
along the legs of the modules between the silicon sensor and the carbon fiber support frame. The
connection of the bias voltage to the back plane is done via wire bonds. Thermal probes are placed
on the Kapton foil to measure the temperature of the silicon. The glue joint between the temperature
sensor and the back plane is done with the silicone glue RTV 3140.

The pitch adapter between the front end hybrid and the silicon sensor adjusts the strip pitch
of the sensor (80 um-205 um depending on sensor type) to the APV pitch of 44 um. It also allows
placing the heat producing front end electronics farther away from the silicon sensors. A pitch
adapter for TOB and TEC consists of a 550 um thick glass substrate (Schott D263 glass), cut to
the correct dimensions, with a pattern of low resistivity aluminium strips. For TIB 300 pum thick
glass (Corning 1737F or G glass) is used. The 10 um narrow lines are etched on a (1.0-1.5) um
thick aluminium layer deposited on a chromium base, resulting in less than 25 mQ /(1.

Module assembly and testing

Sensors and front end hybrids are glued to the frames by high precision gantry robots. The compo-
nents are aligned by cameras surveying special fiducial marks with a pattern recognition algorithm.
In total seven institutes shared the responsibility for the assembly of all modules. The assembly rate
was about 20 modules per day per gantry robot. A positioning precision of approximately 10 um
(RMS) has been achieved and one example from the quality control can be seen in figure 3.23.

Thin wire wedge bonding is used in several places on the modules to make electrical con-
nections: APV chip to front-end hybrid, APV chip to pitch adapter, pitch adapter to sensor, sensor
to sensor (in case of two-sensor-modules), bias voltage connection to the sensor back plane. In
total 15 institutes (bonding centers) shared the responsibility for wire bonding all modules. The
bonding rate was approximately 1 Hz. Bonding wire (99% aluminium, 1% silicon) with a diameter
of 25 um was used for all connections.

For the TEC and TOB modules the line of bonding wires connecting the hybrid pitch adapter
to the silicon strips, and in the case of two sensor modules the strips of the two sensors, can be
damaged by vibration during transport. As a protection for the TEC modules the silicon is glued
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Figure 3.23: A typical residual distribution (in ttm) for a reference point on the modules is shown
for the different module assembly centers, indicating a precision of 10 gm (RMS) in the module
production.

to a supporting strip (400 um thin ceramic Al,O3) which in the case of the pitch adapter-sensor
connection is also glued to the graphite cross piece. The reinforcement for the TOB modules was
done by dispensing Sylgard 186 glue on the backside of the modules, between the two sensors and
between the near sensor and the edge of the hybrid. For the TOB modules the sensor-sensor bonds
and the backside APV bondings are encapsulated by Sylgard 186 glue across the bonding wires.
For TIB modules no reinforcement was done.

After wire bonding each module was tested and graded, using the ARC system [51]. A
detailed description of all tests performed and the acceptance criteria for good channels is given in
the reference. Modules were graded A if fewer than 1% of the channels were failing the quality
acceptance criteria (due to high noise, open bondings, oxide defects) and B if the failure rate was
less than 2%. The remaining modules were graded C and were not used in the experiment. Other
reasons to reject modules were imperfect mechanical precision or poor high voltage behaviour. All
relevant test results are stored in the central CMS tracker data base. The yield of module production
was greater than 97%.

3.3.4 Tracker Inner Barrel and Disks (TIB/TID)
Introduction and mechanics

The Tracker Inner Barrel (TIB) consists of four concentric cylinders placed at radii of 255.0 mm,
339.0 mm, 418.5 mm, and 498.0 mm respectively from the beam axis that extend from —700 mm to
4700 mm along the z axis. The two innermost layers host double sided modules with a strip pitch
of 80 um, while the outer two layers host single sided modules with a strip pitch of 120 um. Each
cylinder is subdivided into four sub-assemblies (£z, up/down) for ease of handling and integration.
Each of these sub-assemblies (half-shells) hosts an independent array of services from cooling to
electronics and thus can be fully equipped and tested before being mechanically coupled to each
other during final assembly.
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Figure 3.24: Schematic drawing of the TIB/TID+ subassembly. This structure and its twin
(TIB/TID-) nest inside the Tracker Outer Barrel (TOB), one for each end. Services routed out
from the margherita consist of copper cables for powering and slow controls, optical fibers for
signals and controls and also cooling fluid supply lines made of aluminium tubing.

Two service cylinders are coupled to the ends of TIB+ (referring to +z or —z) which end
in a service distribution disk called the margherita (see below). These service cylinders play a
dual role: one is to route out services from the shells to the margherita, the other is to support the
Tracker Inner Disks (TID) which sit inside them. Figure 3.24 shows a schematic drawing of one
half TIB/TID structure together with its corresponding margherita.

The TID=+ are assemblies of three disks placed in z between 800mm and £900mm. The
disks are identical and each one consists of three rings which span the radius from roughly 200 mm
to 500 mm. The two innermost rings host back-to-back modules while the outer one hosts single
sided ones. Just like the TIB shells each individual ring can be fully equipped and tested inde-
pendently of the others before final assembly. Together the full TIB/TID guarantee hermetical
coverage up to pseudorapidity 1 = 2.5.

All mechanical parts like shells, disks and service cylinders are made of high strength low
deformation carbon fiber chosen both for its lightness and its low material budget. The margherita
is instead made of conventional G-10 fiber epoxy with 30 um copper on both sides.

The silicon detector modules are mounted directly on the structure’s shells and rings. Thus,
while a large number of modules has to be integrated and tested at any one time, the approach
chosen allows for far greater precision of assembly. The individual components of a TIB shell,
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some of which not only service the silicon detector needs but also define its geometric position in
space, will be described in some detail in next paragraphs.

Cooling

The cooling circuits must be able to efficiently cool the detectors with a cooling liquid temperature
down to about —25°C, while keeping the material budget as low as possible. For the TIB/TID
the decision was made to use aluminium piping of 6 mm cross section and 0.3 mm wall thickness.
These pipes are bent into loops and soldered to inlet/outlet manifolds which connect several loops
in parallel. The thermal connection between pipes and silicon modules is made with aluminium
ledges which are glued to the pipes. On each ledge there are two threaded M1 holes onto which
the modules are tightened. For the TIB each loop hosts three modules placed in straight row
(figure 3.25), while in the TID arrangements are more varied even though the number of modules
per cooling loop is similar.

Since the position of the ledges defines the position in space of the modules, after the glue
has hardened the whole half cylinder is surveyed with a precision measuring machine. Before
gluing, the circuits are tested individually for leaks both at cold temperatures (—30°C) and at high
pressure (20 bars). It is only after the survey that the TIB cylinders (or TID disks) are available
for the integration of the electrical parts including the detector modules. The dimensions of the
cooling circuit vary from layer to layer and depend on the amount of power dissipated by the
modules used for that specific layer. The cooling circuits vary from a minimum of four loops (12
modules equivalent) for the double sided layers to a maximum of 15 loops for the outer single
sided ones where individual module heat dissipation is much lower. The TIB/TID uses a total of 70
independent cooling circuits so that in case of an accidental break in one of the circuits only a small
part of the tracker is affected. The TIB thus is organized in three module ladders (the cooling loop)
which cover the outer and inner surface of the four layers. The same concept applies to the TID
with the only difference that the number of modules per cooling loop varies with the ring radius.
The electrical grouping which we now describe takes this mechanical distribution into account.

Electrical grouping

The modules have been grouped together electrically. The basic group consists of three modules
which sit on any given cooling loop (figure 3.25). The three modules are interconnected through
a Kapton circuit (mother cable) through which powering, detector biasing and controls are dis-
tributed. At the top of a mother cable sits a CCUM which takes care of clock, trigger and I°C
distribution. These mother cables are then electrically joined in a more complex group called the
control ring which distributes trigger, clock and slow control signals to the CCUMs. Control ring
groups never straddle two different cooling loops and are dimensioned so that a reasonable com-
promise between granularity and complexity is achieved. Control rings in the TIB/TID make use
of a unit called the DOHM (Digital opto-hybrid module) which receives all the signals from the
optical fibers coming from the front end controllers (FEC) and converts them to electrical LVDS
signals that are then distributed to up to 45 detector modules (15 mother cables) via CCUs. Given
the high number of modules belonging to a Control Ring, TIB/TID has implemented redundancy
in its DOHM hardware.
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Figure 3.25: Three TIB modules mounted on a layer 3 shell. The Kapton mother cable runs
underneath. A CCUM module at the end of the string interfaces the modules to the control ring.
Also visible are the three analog opto-hybrids (see text) and fibers.

Modules have been grouped together to keep the number of power supplies down to a man-
ageable level. The smallest power group consists of three modules (one mother cable) while the
largest comprises up to 12 modules (four mother cables). Power groups are contained within a con-
trol ring (i.e. there is no straddling across control ring boundaries) and are fed by a specific power
supply unit (PSU) developed for the tracker which also supplies HV biasing for the detectors.

Analog signals from the detector front end are converted to optical by analog opto-hybrids
which sit next to the silicon modules and are connected directly to the front end hybrids. Thus
the system is completely optically decoupled from the DAQ which helps preserve signal integrity
while avoiding ground loops.

Grounding of the TIB/TID relies on the cooling circuits which are made of aluminium. The
return current wires are connected to the cooling manifolds for all mother cables and DOHMs. The
cooling inlet and outlet pipes run along the service cylinder across the margherita, making electrical
contact with it. Outside the tracker volume these pipes are then connected to the CMS detector
ground. Power cable shields are connected to the margherita which hosts all of the connectors. All
detector modules have their own carbon fiber frame directly connected to the front end hybrid local
ground. The shells are grounded through the cooling manifolds.

3.3.5 Tracker Outer Barrel (TOB)
Mechanical structure and layout

The Tracker Outer Barrel consists of a single mechanical structure (wheel) supporting 688 self-
contained sub-assemblies, called rods.

The wheel is composed by four identical disks joined by three outer and three inner cylin-
ders (figure 3.26). Disks and cylinders are made of carbon fiber epoxy laminate. The cylinders
have a core of aramid-fiber honeycomb. The joints between disks and cylinders are realized with
aluminium elements glued to the carbon fiber parts on precision fixtures, and then bolted together.
Each of the disks contains 344 openings, in which the rods are inserted. Each rod is supported by
two disks, and two rods cover the whole length of the TOB along the z axis. The wheel has a length
of 2180 mm, and inner and outer radii of 555 mm and 1160 mm, respectively. With cabling at its
two ends the TOB has a total length of 2360 mm. The openings in the disks form six detection
layers with average radii of 608, 692, 780, 868, 965, 1080 mm. Within each layer, the centers of
gravity of the rods are displaced by +16 mm with respect to the average radius of the layer, thus
allowing for overlap in ¢ and therefore full coverage within each layer. The rod mechanics are
designed in such a way to implement overlap of the silicon sensors at z = 0. In each layer, the
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Figure 3.26: Picture of the TOB wheel.

overlap in the r-¢ view between neighboring rods is always larger than 1.5 mm or 12 strips, while
the overlap around z = 0 is precisely 1.5 mm. Inside the disk openings, the rod support spheres
are held by precision elements made of polyetherimide plastic that are glued to the carbon fiber
structure. The four disks have all been assembled in a temperature-controlled room on one single
precision table, ensuring a precision on the relative positions of the rod holding elements and the
aluminium elements joining disks and cylinder of 100 um, and a reproducibility between different
disks at the 10 um level.

The wheel is equipped with fargets for measurements of the geometrical precision of the
assembled structure. Photogrammetry, theodolites, and 3D coordinate measurement systems have
been used for survey and alignment of the wheel structure. Some of these targets remain visible
after insertion of the TOB in the ftracker support tube, for a precise measurement of the TOB
positioning in the tracker reference frame, and even after integration of TIB, to monitor possible
movements due to deformations of the loaded structure. The wheel mechanics has been thoroughly
measured before starting rod integration, and the relative positioning of the precision elements has
been found to be typically within 100 um of nominal values over the whole TOB dimensions, with
maximum deviations observed around 200 ym.

The rod mechanics

The rods are self-contained assemblies providing support and cooling for 6 or 12 silicon detector
modules, together with their interconnection and read-out electronics.

The mechanical structure consists of two 1130 mm long carbon fiber C-shaped profiles, joined
by several transverse carbon fiber ribs and plates. All rod components are contained in an envelope
of 159 x 1130 x 22 mm?, except the four supporting spheres that stick out laterally in correspon-
dence of the two disks of the wheel, and the z-sfops that block the rod against the outer disk surface
after insertion in the wheel.
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A U-shaped cooling pipe runs around the rod, inside the C-profiles; 24 aluminium inserts are
glued through openings along the profiles to the carbon fiber and around the cooling pipe; these
inserts provide support and cooling to the detector modules, that are mounted in six positions along
the rod, three per side. Each detector is supported by four inserts, two close to the read-out hybrid,
and two close to the sensor-to-sensor bonds. The two inserts close to the hybrid implement pins on
which the Cu-Be springs on the module frame are clamped, determining the precision of the mod-
ule positioning; all four inserts have a threaded hole for the fixation of the module to the rod: cup-
shaped washers together with a calibrated torque used in tightening the screw ensure efficient cool-
ing contact between the aluminium heat spreader on the module frame and the rod support inserts.
On the cooling pipe side, the shape and the size of the inserts is optimized to minimize the thermal
impedance of the contact, which in turn allows to minimize the cross section of the cooling pipe.

In single-sided rods, which populate layers 3—6, one detector module is mounted in each of
the six positions, with the strips facing the central plane of the rod. In double-sided rods, which
populate layers 1 and 2, two detectors are mounted in each position, the inner one as in single-sided
rods and the outer one with the backplane facing the backplane of the first module. The distance
between the sensor and the middle plane of the rod is £3.3 mm in single-sided rods, £3.3 mm and
+7.6 mm in double-sided rods.

The rod cooling pipes, and the manifolds housed on the outer disks of the wheel, are realized
in CuNi 70/30 alloy. This material is chosen for its corrosion resistance, and as it allows reliable
solder joints to be made relatively easily, avoiding the use of o-rings or ferrules in the pipe connec-
tions; the reliability of the cooling circuits is a crucial issue for the tracker, and particularly so for
the TOB, which is the most inaccessible subsystem once the detector is fully integrated. The rather
high density of the material (its radiation length of about 1.4 cm is 6 times shorter than that of alu-
minium) is compensated by the reduced thickness of the walls that this technology allows: rod pipes
and manifolds have 100 ym and 200 um wall thickness, respectively. In addition the design of the
cooling circuit has been optimized (as already mentioned above), to minimize the cross section of
the pipes (the cooling fluid also gives a non-negligible contribution to the material budget), and to
maximize the number of rod pipes served by a single manifold (within the constraints of the desired
cooling performance). An outer diameter of 2.2 mm is chosen for single-sided rod pipes (providing
cooling to 6 detectors), 2.5 mm for double-sided rod pipes (providing cooling to 12 detectors), and
6 mm for the manifolds; one manifold serves on average more than 15 rod pipes, the actual number
varying between 8 and 22 depending on the region of the TOB. Overall, the whole TOB is served
by 44 cooling lines, giving an average of 118 detectors, or 550 read-out chips, per line.

Rod electrical design

The 6 or 12 modules housed in a rod form a power group, i.e. they are supplied by a single power
supply unit. The low voltage lines supplying the front-end hybrids and the Analogue Opto-Hybrids
(AOHS) run in the Inter-Connect-Bus (ICB), a 700 mm long printed circuit board sitting in the
middle plane of the rod (figure 3.27). The Communication and Control Unit Module (CCUM)
is plugged to one end of the ICB. The clock and the control signals issued by the CCUM are
also routed to the final destinations through the ICB. The distribution of power, clock and sig-
nals to front-end hybrids and AOHs proceeds through four other PCBs, the Inter-Connect-Cards
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Figure 3.27: Photo of a rod frame equipped with electronics components, ready to receive silicon

detector modules.

(ICCs). Two ICCs serve one module position and two other ICCs serve two module positions.
ICCs have different design in single-sided rods and double-sided rods, which have one and two
modules mounted in each module position, respectively; therefore there are in total four different
ICC flavours in the TOB.

The ICB is held in place by small transverse carbon fiber plates; the ICCs and the CCUM are
plugged to the ICB and screwed to the aluminium module support inserts (on the opposite side of
the module), which also provide a good cooling contact to those boards. The AOHs are supported
and cooled only by the connector that plugs to the ICCs. In addition to distributing LV power and
CTRL signals, the ICCs receive the data lines from the read-out hybrid and route them to the AOHs
(a few cm away) where they are converted to optical signals. The ICCs also receive lines carrying
temperature information from the module frame Kapton circuit and route them to the ICB. The
optical fibers leaving the AOHs travel inside the carbon fiber profiles, guided by dedicated plastic
holders. The only electrical lines not integrated in the ICB/ICCs distribution system are the bias
lines for the sensors. These run in dedicated wires (size AWG 26) housed in the carbon fiber
profiles, while the line with the return current is integrated in the ICB. There are six lines in single-
sided rods (one per module), and 8 lines in double-sided rods (four serving one module each, and
four serving two modules each). The LV lines and the HV lines go in separate connectors in the rod
end-panel, each of which also hosts some temperature lines, and then run all together to the back-
end in one multi-service cable plus low-impedance cable. At the power supply backplane the six or
eight bias lines are connected to the two independent high-voltage supply lines in such a way that
each line powers one side of the rod. The clock and control lines as well as the LV lines powering
the CCUM leave the rod through a short cable which plugs into the next rod of the control ring. The
first and the last rod of a control ring are connected to the Digital Opto-Hybrid Module (DOHM).
This board houses the digital opto-hybrids optically connected to the remote control system and
distributes the clock and the control signals through a token-ring 40 MHz LVDS-based protocol to
the connected rods (up to 10). The length of the optical fibers coming from the AOHs is chosen so
that all fibers end at the same location near the CCUM, where the connectors of the 12-fiber ribbons
are integrated (figure 3.28). The choice of including the optical patch panel inside the rod volume
was made to reduce the thickness of the TOB services on the TOB end-flanges, so minimizing the
inactive volume between TOB and TEC.
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Figure 3.28: Top panel: photo of an assembled double-sided rod, showing the CCUM side, with

the 12-way optical ribbons connected to the AOH fibers. Bottom panel: double-sided rod being
prepared for insertion in the TOB mechanics; the side opposite to the CCUM is shown.

Electrical and read-out grouping

The grouping of the rods into control rings is designed primarily to avoid having control rings
spanning across two different cooling segments, while maximizing the size of a control ring (to
reduce cost and material budget) within the recommended limit of 10 CCUMs per ring. This logic
results in two or three control rings per cooling segment, with a single exception of a cooling
segment containing one control ring only. The average number of CCUMs (i.e. of rods) per ring
in the TOB is 7.5. Within a control ring, rods are clustered in groups that are read out by the same
FED. Again, a read-out group never spans over two control rings, and the grouping is optimized to
minimize the number of unused channels in the FEDs (to reduce cost). The average FED occupancy
in the TOB is 94%. In summary, the TOB is made of 688 rods read out by 134 FEDs, controlled
by 92 DOHMs, and cooled by 44 independent lines.

Grounding

In each rod the return line of LV and bias is connected inside the CCUM to the return line of
the LV power of DOHM and CCUMs, and connected through a short multi-wire cable to the
cooling manifold serving the rod: this is the main ground connection of the rod. The grounding is
improved by additional ground connections in each ICC, implemented through metalization around
the mounting holes.

The DOHMs, mounted on the TOB end-flange (figure 3.29), are protected by alodyned alu-
minium plates of 0.5 mm thickness, which are locally connected to the power return line.
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Figure 3.29: Photo of the completed z+ side of the TOB. The DOHM:s form the outer layer of the
services on the TOB end flange. Optical ribbons (green) run out, grouped in 16 channels. Power
cables and feeding pipes run parallel to each other on the thermal screen panels.

The cooling circuits of the different segments are then connected electrically through short
multi-wire cables soldered to the radial pipes feeding the manifolds (or to the manifolds themselves,
for the outer layer) and screwed to the ground rings: an alodyned aluminium bar of 10 x 10 mm?
square section bent to round shape and equipped all along with threaded holes, which is installed
at the outer radius of the TOB, on both sides. Gold-coated copper strips of 30 mm width and
0.2 mm thickness connect the ground ring to the carbon fiber structure of the outer cylinder, in
eight locations in ¢. The connection to the carbon fiber is realized with conductive araldite. The
same strip material is used to realize the electrical connections between outer cylinders and disks,
and inner cylinders and disks, again in eight locations in ¢. In addition, copper strips as long as the
whole TOB are added on the outer surface of the outer cylinder (visible in figure 3.26); for the inner
cylinder instead, which is inside the tracking volume, it was decided to rely on the conductivity of
the carbon fiber.

Such design of the grounding scheme ensures good electrical connection of mechanical struc-
tures and power return lines making efficient use of the existing conductive materials (cooling pipes
and carbon fiber parts), with minimal amount of added metallic elements.
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3.3.6 Tracker EndCaps (TEC)
Mechanical structure

The endcaps extend radially from 220 mm to 1135 mm and from +1240 mm to #2800 mm along
the z-direction. The two endcaps are called TEC+ and TEC- (according to their location in z in the
CMS coordinate system). Each endcap consists of nine disks that carry substructures on which the
individual detector modules are mounted plus an additional two disks serving as front/back termi-
nation. A sketch of one endcap and a photograph of the completed TEC+ is shown in figures 3.30
and 3.31. Eight U-profiles, referred to as service channels because all services are grouped in their
vicinity, join the disks together along their outer periphery, while at its inner diameter each disk is
attached at four points to an inner support tube. To preserve the envelope necessary for the insertion
of the pixel detector, the last six disks have a larger inner radius (309 mm) as compared to the first
three (229 mm).

The disks are Carbon Fiber Composite (CFC) / honeycomb structures. The honeycomb core
is 16 mm thick NOMEX, 3.2-92 with a border of epoxy potting. On either side of the core there
is a symmetric layup of CFC skins (0.4 mm thickness). The skin material is CF-fabric THENAX
HTA 5131,3K (T300) impregnated with EP121 epoxy resin. The same material is used for the
service channels and the inner support tube. The latter has a thickness of 3 mm and is azimuthally
segmented into four 90° segments. Each of these segments is attached to the disks and the gaps at
the joints between segments are filled with epoxy glue so that they are gas tight. A thin cylindrical
skin made of 0.5 mm thick CFC panels surrounds the endcaps on the outside and serves as a gas
envelope for the atmosphere of dry nitrogen. The front plate has the same function and consists of
a5 mm NOMEX core with 0.2 mm CFC skins on each side. The back plate provides an additional
thermal shielding for the cold silicon volume and is considerably thicker. The NOMEX core is
45 mm with each CFC skin 1.5 mm thick. The back plate also serves to make the overall structure
rigid in the z-direction. The back plate is covered by another carbon fibre disk, the bulkhead, which
is, however, mechanically detached from the TEC and supported by the tracker support tube. The
bulkhead carries the outer connectors of all TEC cables, thereby forming a patch panel for the
electrical connection of the TEC to the external power cables. It is covered by panels with heating
foils which close the thermal screen at the end face of the tracker support tube.

Ten different module types are arranged in rings around the beam pipe. For reasons of mod-
ularity they are mounted on substructures called petals, which in turn are mounted on the disks.
Disks 1 to 3 carry seven rings of modules, ring 1 is missing on disks 4 to 6, rings 1 and 2 are miss-
ing on disks 7 and 8, and disk 9 carries rings 4 to 7 only. Rings 1, 2 and 5 are built up of so-called
double sided modules: two modules are mounted back-to-back with a stereo angle of 100 mrad.
This provides space information perpendicular and parallel to the strip orientation.

Petals

To allow easy access to the detector modules they are mounted on modular elements, the petals
(figures 3.32 and 3.33). Petals can be individually removed from the endcaps without uncabling
and/or disassembling the entire structure. A total of 16 petals are mounted on each of the nine
disks of one endcap, eight on the front face of the disk — as seen from the interaction point —
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Figure 3.30: Left panel: Sketch of one tracker endcap. Modules are arranged in rings around the
beam axis. They are mounted on trapezoidal sub-structures called petals. One sector, indicated
with a line, consists of nine front petals mounted on the disk sides facing the interaction point (3
FD13, 3 FD46, 2 FD78, 1 FD9) and nine back petals mounted in the opposite side of a disk (3
BD13, 3 BD46, 2 BD78, 1 BD9). Right panel: Photograph of a TEC as seen from the interaction
point. The diameter of the TECs is 2.3 m.

Figure 3.31: Side view of a TEC.

(front petals) and eight on the back face (back petals). Mechanically there are two types each of
front and back petals, long petals for disks 1-3 and short ones for disks 4-9. As described above,
the front and back petals on disks 1-3 carry all seven rings of modules and are labelled FD13 and
BD13, respectively. Petals on disks 4-6 carry rings 2 to 7 (FD46/BD46), those on disks 7 and 8
carry rings 3 to 7 (FD78/BD78), and on disk 9 the petals carry rings 4 to 7 (FD9/BD9). The petals
have a structure similar to the disks, consisting of a 10 mm NOMEX core sandwiched between
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0.4 mm CFC skins. As viewed from the interaction point the modules belonging to rings 1, 3, 5, 7
are mounted on the petal front side (A-side and C-side for the front and back petals, respectively),
while modules in rings 2, 4, 6 are mounted on the back side of each petal (B-side and D-side for
the front and back petals, respectively). On a given disk the front petals overlap azimuthally with
the back petals, as do, for a given petal, detector modules belonging to the same ring. Detectors in
adjacent rings are arranged to overlap radially, thus providing full coverage. Each petal is mounted
on inserts in the main disks using a three point fixation: one point fixed in x, y and z, one fixed only
in phi, and one fixed only in z.

Cooling

The heat generated by all electronic components on a petal must be removed efficiently. In addition
the silicon sensors must be operated at a temperature of about —10°C to reduce the effects of
radiation damage. The silicon sensors and front end hybrids are cooled via the CFC frames of
the detector modules, for which carbon fiber of high thermal conductivity is used (800 W/(m K)).
The aluminium inserts for positioning the modules serve at the same time for the coupling to the
cooling pipe. The two inserts along the legs of the module frame provide primarily for the cooling
of the sensors, while the inserts on the frame base are heat sinks for the front end hybrid. Each petal
contains two cooling circuits traversing the petal longitudinally and meandering from one cooling
point to the next. The cooling pipes are made of titanium with an outer diameter of 3.9 mm and a
wall thickness of 0.25 mm. They are embedded in the petal and serve to cool the components on
both back and front side. The tubing is pre-bent into the proper shape. The input/output manifolds
are laser welded onto the cooling pipes. After having milled the corresponding grooves and holes
into the petals, the tubing is inserted. Gluing jigs are used to position the cooling inserts and to
glue them to the pipes and to the petal. To close the grooves and re-establish the integrity of the
petal a CFC skin with holes at the location of the inserts is glued onto the petal face. The inserts
are then machined to the precision required for module positioning. The maximum heat load from
the electronics on a petal is about 87 W, including the heating of the sensors after ten years of LHC
operation. In these conditions a mass flow of 2.3 kg/min of the C¢F4 coolant gives a temperature
difference of 2°C between petal inlet and outlet. The connection of the petal circuits to the piping
running along z is done at the outer periphery of the petal. These connections can be undone easily
in case the petal needs to be removed. A pair of longitudinal pipes serves either 4 or 5 petals, which
are connected in parallel. A total of 64 longitudinal stainless steel pipes with 11 mm inner diameter
are used per endcap.

Electrical system design

The silicon modules, AOHs and CCUMs on the petals are connected to motherboards, called In-
terConnect Boards or ICBs, which are mounted on both sides of the petal. In figure 3.32 photos
of a bare front petal equipped with ICBs only are shown. There are five individual boards: the
main board ICB_46 on side B/D, which carries all the connectors for the cables and two CCUM
boards and transmits power and signals to the modules of rings 4 and 6, and four smaller boards,
which provide the power and signals for the other rings (ICB_2 on side B/D and ICB_1, ICB_3
and ICB_57 on side A/C, where the numbers correspond to the number of the ring to which the
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Figure 3.32: The different ICBs on the two sides of a front petal: ICB_2 and ICB_46 on side B,
and ICB_1, ICB_3 and ICB_57 on side A (from left to right). On ICB_46, the two CCUMs are

plugged.

Figure 3.33: Left photograph: front side of a TEC Petal. Right photograph: back side.

connected modules belong). These four boards are connected to the main board. The ICB brings
the ground, the various supply voltages and the bias voltage to the electrical devices on the petal,
and transmits LVDS and I>C signals. In addition analogue data from the FE hybrids are transmitted
differentially to the AOHs over distances of a few centimetres.

To keep the number of low voltage power supplies and connections relatively small while
limiting the current that must be provided by one power supply, the modules are organized in three
low voltage (LV) groups, which are served by individual power supplies. The LV group 1 consists
of rings 1 and 2, group 2 contains rings 3, 4 and 6 and finally rings 5 and 7 belong to group 3. This
corresponds to 8/11/9 (4/8/11) modules or 48/44/44 (24/32/56) APVs on front (back) petals in LV
group 1/2/3. In total there are eleven power rails on ICB_46, which must carry a current of up
to 12 A. Sensing is implemented for the low voltage connections. The sense resistors are located
in the electrical centre of each power group. Capacitances are implemented on the ICB near the
power input connectors as well as near the front-end connectors to suppress ripples and minimize
a possible voltage overshoot caused by switching off the FE-hybrids.

For each low voltage group, two high voltage channels are provided. For each HV channel
there are up to four single HV lines, which bias one or two silicon modules.

The ICB_46 and ICB_57 have six copper layers, while the smaller boards have only four
layers. To limit the contribution to the material budget, the copper layers are rather narrow and thin.
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The layer thickness amounts to 17 and 25 yum for the inner four and outer two layers, respectively,
except for the innermost layer of boards ICB_1, ICB_3 and ICB_57 on front petals and ICB_1,
ICB_2 and ICB_3 on back petals, which has a thickness of 35 um. Digital and data traces are
shielded by power and ground layers.

Two petals, one back and one front petal, are connected in a control ring. The front petal is
the first in the control loop. Both on back and front petals, rings 1-4 and 5-7 are connected to one
CCU, respectively. The Digital Opto-Hybrid (DOH) converts the optical signals to electrical LVDS
signals and vice versa. Two DOHs are located on a separate PCB, the Digital Opto-Hybrid Module
(DOHM), which is mounted on the back petal. From the DOHM, which also distributes the power
for the DOHs, electrical signals are transmitted to the CCUMs on the petal. For the control ring, a
redundancy scheme is implemented on the ICB. Each CCU can be bypassed electrically in case of
a problem, so that the functionality of the control ring is maintained. The second DOH is needed
for redundancy purposes only. To allow also the last CCU on the ring to be bypassed, a fifth CCU
is located on the DOHM. It is used only in this special case. However, if two consecutive CCUs
are faulty, the complete control ring is lost.

Low-pass filters are implemented for the traces of the temperature signals that are brought out
via power cables, to ensure that noise is not coupled in via these lines. In addition to the thermistors
located on the Kapton of the silicon modules, several temperature and humidity probes are located
on or connected to the ICB. Two 10kQ NTC thermistors are located on ICB_46 on front petals
and read out via the power cable of low voltage group 2. Both on front and back petals, four 10 kQ
NTC thermistors are glued to the cooling inserts of the ring 6 modules. They are read out via the
DCU that is present on each CCUM. On both petal types, a humidity sensor can be connected to
ICB_46. For back petals, this sensor is read out via the power cable of LV group 2. On each z-
side in total 12 hardwired humidity sensors are distributed over the TEC volume. For front petals,
the humidity sensor is read out via the DCU on the CCUM. Front petals of all disks of the top
and bottom sectors carry these additional humidity sensors, providing detailed information on the
relative humidity along the z-direction.

Kapton cables of about 15 cm length are used to link the petals inside one control ring with
each other and with the DOHM, providing the electrical digital signals and the power for the
CCUMs. These cables consist of two copper layers with a thickness of 35 um each, separated
by a 100 um thick polyimide layer.

Each TEC LV group is supplied by one so-called multiservice cable, which transmits the
analogue power and the bias voltage and brings out signals from temperature or humidity sensors.
Inside the tracker support tube, power cables are arranged around the main TEC cooling pipes that
run along the z direction, and end at the bulkhead. These cables implement silver-plated aluminium
conductors to minimize the impact on the material budget. Typical currents per cable range from
about 5 A to 11 A, depending on the number of APVs connected. Therefore three cable types exist,
with wire cross-sections tailored to the differing needs.

The connection from the bulkhead to the so-called patch panel 1, located outside of the tracker
volume, is provided by power cables implementing tinned copper conductors. The control power
is transmitted via separate cables, which also break at the bulkhead. In this case tinned copper
conductors are used both inside and outside the tracker volume.
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The grounding scheme

The so-called TEC common ground is located at the back end of each TEC. It is realized by means
of a 5cm wide and 150 um thick copper ring, which is glued to the outer radius of each back
disk and tied to the brackets that connect the tracker support tube to the hadron calorimeter. The
material of the hadron calorimeter represents a very solid ground. The shields of all cables, the
reference points of all power groups, the cooling manifolds that are used to connect the cooling
pipes of the petals to the main tubes that are mounted on the TEC, the CF skins of the disks and
petals and the outer aluminium shields of the TEC are connected to this TEC common ground. On
the petal side, one common analogue ground is implemented per petal. This so-called local petal
ground is distributed via a 2 cm wide and 20 um thick copper path along the ICBs as a reference
rail. The LV and HV supplies of all power groups are referenced to this local petal ground at the
geometrical/electrical centre of each group. The digital ground of a control group is referenced
once to the local petal ground. The local petal ground of each petal is connected to the TEC
common ground. Copper strips glued to the outer radii of the disks and along the service channels
that connect all disks with the back disk provide the electrical connection to the TEC common
ground. These copper strips are connected via short copper braids to the ICBs on the petals. The
carbon frames of the silicon detectors are connected via a conductive glue spot to the bias Kapton
and finally via the ICB to the FE hybrid ground. To avoid ground loops, the frames are electrically
insulated from the cooling pipes by an anodized layer between the cooling inserts and the pipe.

3.3.7 Geometry and alignment

The deviation of true position and orientation of tracker modules from their nominal values as
specified in the engineering drawings depends on many factors with different origin, some of them
time-dependent: the achieved assembly precision, deformation due to tracker cooling, stress from
access and magnetic field, out-gassing of components in dry nitrogen. This leads to a degradation
of the track parameter resolution (figure 3.4), which needs to be recovered by determining true
module position and orientation, called alignment.

Alignment of the tracker relies on three key components: the various data about assembly
gathered during the integration process, the Laser Alignment System and the alignment with tracks,
ordered by increasing precision and availability with time.

For alignment purposes, modules with two sensors are treated as they would have one large
sensor with identical active area coverage. This is justified by sensor mask design [36] and achieved
sensor placement accuracy (figure 3.23).

The CMS tracker alignment task thus consists of the determination of three translational and
three rotational parameters for each of the 15 148 tracker modules. To achieve ultimate precision,
it might be necessary to consider additional parameters, e.g. the sensor bow due to single-sided
processing.

Geometry

Two methods are mainly used for measuring tracker component assembly precision: survey with
coordinate measurement machines with a typical accuracy of a few um to a few tens of um, and
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Table 3.2: Estimated assembly precision (RMS, in um) of tracker components. Values are given
with respect to the next level in the hierarchy, e.g. the position accuracy of sensors in modules is
10 pm.

TIB TID TOB TEC
Sensor Sensor Sensor Sensor
10 10 10 10
Module Module Module Module
180 54 30 20
Shell Ring Rod Petal
450 185 100 70
Cylinder Disc Wheel Disc
750 350 140 (r¢), 500 (z) 150
Tube Cylinder Tube TEC
450 1000 600
Tube CMS Tube

photogrammetry with an accuracy of 150 um (80 pm) under good (optimal) conditions for relative
measurements. The measured and expected mounting precision from those data are summarized in
table 3.2. It should be noted that structure deformations due to loading as well as temperature and
humidity variations have not been taken into account.

The software description of the position and orientation of the active detector volumes has
been validated with survey data and reconstructed tracks from test beams and cosmic muons
recorded in various test and integration setups.

Laser Alignment System

The Laser Alignment System (LAS, figure 3.34) uses infrared laser beams with a wavelength
A = 1075 nm to monitor the position of selected tracker modules. It operates globally on tracker
substructures (TIB, TOB and TEC discs) and cannot determine the position of individual modules.
The goal of the system is to generate alignment information on a continuous basis, providing ge-
ometry reconstruction of the tracker substructures at the level of 100 um, which is mandatory for
track pattern recognition and for the High Level Trigger. In addition, possible tracker structure
movements can be monitored at the level of 10 um, providing additional input for the track based
alignment.

In each TEC, laser beams cross all nine TEC discs in ring 6 (ray 2) and ring 4 (ray 3) on back
petals, equally distributed in ¢. Here special silicon sensors with a 10 mm hole in the backside
metalization and an anti-reflective coating are mounted. The beams are used for the internal align-
ment of the TEC discs. The other eight beams (ray 4), distributed in ¢, are foreseen to align TIB,
TOB, and both TECs with respect to each other. Finally, there is a link to the Muon system (ray 1),
which is established by 12 laser beams (six on each side) with precise position and orientation in
the tracker coordinate system.

The signal induced by the laser beams in the silicon sensors decreases in height as the beams
penetrate through subsequent silicon layers in the TECs and through beam splitters in the align-
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Figure 3.34: Overview of the CMS Laser Alignment System.

ment tubes that partly deflect the beams on TIB and TOB sensors. To obtain optimal signals on
all sensors, a sequence of laser pulses with increasing intensities, optimized for each position, is
generated. Several triggers per intensity are taken and the signals are averaged. In total, a few
hundred triggers are needed to get a full picture of the alignment of the tracker structure. Since the
trigger rate for the alignment system is around 100 Hz, this will take only a few seconds. These
data will be taken at regular intervals, both in dedicated runs and during physics data taking.

Alignment with tracks

CMS pursues the development of two novel track-based alignment algorithms that allow to quickly
solve the system of linear equations of order &'(100000). The first is an extension to the well-
known global Millepede algorithm [52], that takes all correlations into account and has been shown
to successfully align the most sensitive 50 000 parameters. The second is a novel approach using
a Kalman Filter [53], which bridges the gap between global and local algorithms by taking into
account the most important correlations. In addition the HIP [54] algorithm, which is local in the
sense that it takes into account only correlations of parameters within a module, is developed in
parallel. In this algorithm, correlations between modules are dealt with implicitly by iterating the
alignment many times. All three methods are expected to be able to provide alignment constants
for the full silicon pixel and strip tracker.

Experience from other experiments has shown that collision data are not sufficient to constrain
certain correlated module movements well enough to obtain a unique set of alignment constants.
Therefore complementary data and constraints need to be exploited. Examples are tracks from
cosmic muons (with and without magnetic field) that constrain the tracker barrel modules, or beam
halo muons for the endcap. Beam gas and minimum bias events are also under consideration.
Typical examples of constraints are a vertex constraint for decay particles e.g. from Z — u*u~
or jets, mass constraints, measurements from the Laser Alignment System, and survey constraints.
First studies indicate that those data will provide a unique alignment parameter set.
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Figure 3.35: TEC+ disk rotation A¢ (around the beam axis) and displacements Ax, Ay (in the disk
plane) as determined from survey, LAS and cosmic muon tracks.

During integration of the TEC+, deviation of disk positions and rotations from nominal val-
ues have been determined from survey with photogrammetry, the LAS, and tracks from cosmic
muons. Figure 3.35 shows the results from the three complementary methods. The global degrees
of freedom (absolute position and orientation, torsion and shear around the symmetry axis) have
been fixed by requiring the average displacement and rotation as well as torsion and shear to be
zero. The values agree within 60 um and 80 prad with each other, which can be taken as an upper
value on the precision of each method.

3.3.8 Detector control and safety system

The Tracker Detector Safety System (TDSS) and tracker Detector Control System (tracker DCS) is
a two pillar system. The TDSS ensures independently the safety, with a large PLC (Programmable
Logical Controller) system, occupying 6 LHC racks. A limited set of around 1000 hardwired
temperature and humidity sensors are evaluated and out of limit states interlock power supplies.
The tracker DCS, as a complementary partner, controls, monitors and archives all important
parameters. The heart of the DCS is composed out of an industrial SCADA program (Supervisory
Control And Data Acquisition) PVSS (Prozessvisualisierungs- und Steuerungssystem from ETM
Austria, chapter 9) together with a Finite State Machine written in SMI++, a derivative of the
former DELPHI control software; thus using the standard control software framework for all
LHC experiments. The main task of the DCS is to control about 2000 power supplies for silicon
module low and high voltage power and about 100 low voltage control power supplies via the
OPC (OLE for Process Automation) protocol. Detector interdependencies of control, low and
high voltages are handled, as well as fast ramp downs in case of higher than allowed temperatures
or currents in the detector, experimental cavern problems, etc. All this is ensured by evaluating
10* power supply parameters, 10° data points from DSS via a Siemens S7 driver and 10° readings
from the DCUs situated on all front end hybrids and control units CCUs. Several passive alarms
and warning levels are defined for temperature, relative humidity, voltages, currents, etc. and are
reported in a global warning panel as well as limits that, if surpassed, would result in automatic
shutdown. Information from the tracker cooling plant, the thermal screen, beam conditions and
the dry gas system are crucial for safe running and are accessible from the tracker DCS and TDSS.
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All parameters are archived to ORACLE. The TDSS (tracker DCS) system is fully implemented
in the global CMS DSS (DCS) and Run Control system.

3.3.9 Operating experience and test results
Performance in test beam experiments

The system performance of integrated structures of the silicon strip tracker and its data acquisition
chain as well as the performance of the silicon strip modules themselves has been studied in various
test beam experiments at CERN and the Paul Scherrer Institut (PSI), Villigen (CH). In test beam
campaigns, performed in May and October 2004 at the X5 test beam complex in the CERN west
area, large substructures of TIB, TOB and TEC were exposed to a secondary pion beam with an
energy of 120 GeV and a tertiary muon beam with muon energies ranging from 70 to 120 GeV.
The TIB setup comprised a prototype half-shell structure of layer 3, equipped with eight single-
sided strings, plus four double-sided strings, mounted on a custom support structure. For the TOB,
the so-called cosmic rack, a precise mechanical telescope-like structure equipped with four single-
sided and two double-sided rods, was used in the beam tests. The TEC setup consisted of one
back and one front petal [55]. These setups corresponded to about 1% of the complete TIB, TOB
and TEC detectors, respectively. The TOB and TEC setups were operated at a temperature below
—10°C, while the TIB setup was operated at room temperature. Typical primary trigger rates for
the pion beam were 600 000 pions per spill (a 2.2 s long period within a 12 s long SPS cycle during
which particles are delivered) corresponding to a mean occupancy of 15 Hz/cm?.

In the strip-cluster finding the cuts for the signal-to-noise ratio, S/N, of the cluster seed /
neighbour strips / total cluster are 4/3/5 for TIB, 5/2/5 for TOB and 3/2/5 for TEC, respectively.
The cluster noise is calculated by adding the single strip noise values in quadrature (TIB, TEC) or
by taking the seed noise as the cluster noise (TOB). To determine the most probable value for the
S/N of a module, a Landau distribution convoluted with a Gaussian is fitted to the signal-to-noise
distribution, and the most probable value of the fitted function is quoted as the S/N.

The mean most probable S/N values for all module types, together with their strip length,
pitch and abbreviations used in the following, are summarized in table 3.3. For thin (thick) TEC
sensors, most probable S/N values of 29-33 (36-42) in peak mode and 19-22 (20-24) in deconvo-
lution mode have been observed [55]. For the thick TOB OB1 (OB2) modules a S/N of typically 36
(38) and 25 (27) was found in peak and deconvolution mode, respectively [17], while the thin TIB
IB1 (IB2) modules exhibited a S/N of 26 (30) in peak mode and 18 (20) in deconvolution mode.

Assuming that a MIP creates 24 000 electrons in a 300 um thick layer of silicon [16], and
assuming that the beam particles can be treated as MIPs, the S/N can be used to calculate the
equivalent noise charge, ENC. The common mode subtracted noise depends on the capacitance
of the sensor, which depends linearly on the strip length and the ratio between strip width and
pitch, w/p [16]. Since w/p = 0.25 for all sensor types, the ENC varies between different module
types according to the strip length. Results for all module types except W1TID are summarized in
table 3.3. Measurements performed at low temperature (for the TEC, typically hybrid temperatures
of +10°C and 0°C were reached for hybrids with six and four APVs, respectively) are plotted
versus the strip length in figure 3.36. A linear fit to these data yields the following dependence of
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the ENC on the strip length L:

ENCpeak = (36.6£1.9)e” /em- L+ (405+£27)e,
ENCgee = (49.943.2)e /em-L+(590+47)e .

The common mode noise is the standard deviation of the common mode, calculated per APV
from a certain number of events. The mean common mode noise has been evaluated and amounts to
(173+38) and (299 £76) electrons for TEC (mean from all APVs in the setup) and (265 £ 36) and
(300 £ 19) electrons for TIB (mean from all APVs of TIB2 modules) in peak and deconvolution
mode, respectively.

Although no dedicated beam telescope was available, efficiency studies have been performed
both with the TOB and TEC setups, exploiting the fact that in both cases the beam penetrated
several layers of modules. Efficiencies of above 99% have been observed in all such studies.

The uniformity of the module performance along and perpendicular to the strip direction has
been studied in 2003 with several TIB modules in a test beam experiment at the X5 complex. Two
single-sided strings equipped with IB2 modules were mounted on a structure corresponding to a
portion of a layer 3 half-shell, and operated at room temperature. To study the uniformity across the
strips, the strips read out by three APVs (on two different modules) were exposed to a pion beam,
and between 1000 and 8000 events were collected per strip. A cluster was associated to a strip if the
centre of gravity x of the cluster was reconstructed within (n—0.5) - p < x < (n+0.5) - p for strip n
and pitch p. The uniformity, defined as the ratio between the RMS and the mean of the respective
distribution, was 1.3% for the cluster noise, with an increase close to the APV chip edges. The
cluster charge uniformity was of the order of 1.4%, but dropped to 0.5% if calculated separately
for groups of 32 adjacent strips. A uniformity of the S/N of 1.6% on average and of 1.0% for
groups of 32 strips was measured. To investigate the uniformity along the strips, a muon beam was
used for its uniform particle density. The cluster position along the strip could be obtained from the
TOB setup that was operated in the same test beam, since the strip direction of the TOB modules
was perpendicular to that of the TIB modules. The clusters were binned in 24 intervals according
to their centre of gravity, corresponding to length intervals of 5 mm, and about 1500 events were
accumulated per bin. Both the uniformity of cluster charge and S/N were found to be 1.4%.

Performance during integration

Testing during integration consisted typically of checks of the control ring functionality, tests of the
I>C communication of all chips, tests of the gain of the optical connections, commissioning (i.e.
tuning of chip operation parameters), pedestal runs in peak and deconvolution mode, bias voltage
ramping up to 450V, read-out of currents and module and hybrid temperatures through the DCUs,
and a functionality check of the temperature and humidity sensors.

In the following sections the performance of TEC, TIB/TID and TOB during integration is
described. Two comments apply to all three sub-detectors:

* Numbers of dead and noisy strips are given below. While dead strips can be identified reli-
ably, the noisiness of strips depends on external conditions such as grounding and the APV
read-out mode and the figures given should be regarded as estimates only. APV edge strips
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Table 3.3: Pitch, strip length, signal-to-noise ratio and equivalent noise charge after common
mode subtraction for different module types. The TEC and TOB measurements are for hybrid
temperatures of below 0°C, the TIB measurements were performed at room temperature. Sensors
of type IB1 and IB2 are used in TIB, layers 1 and 2 and layers 3 and 4, respectively. In the
TOB, layers 1-4 are equipped with OB2 sensors, layers 5 and 6 with OB1 sensors. The sensor
geometries abbreviated with W are wedge-shaped sensors used in TEC and TID, with the number

corresponding to the ring. W1 sensors have a slightly different geometry in TID and TEC.

Module Pitch Strip length S/N S/N ENC [e7] ENC [e7]
type [um] [mm] Peak mode | Dec. mode || Peak mode | Dec. mode
IB1 80 116.9 258 4+13 | 183 +£0.5 | 931 £+ 48 1315 4 37
1B2 120 116.9 2054+14 | 203 £0.6 815 £+ 37 1182 £+ 31
OB1 122 183.2 36 25 1110 £47 | 1581 £75
OB2 183 183.2 38 27 1057 =17 | 1488 £ 22
WITEC || 81-112 85.2 3314+£07 | 219+0.6 | 714 +23 1019 £ 37
W2 113-143 88.2 317405 | 207 +£04 || 741 £25 1068 £ 51
W3 123-158 110.7 292 +06 | 20004 || 802+ 16 1153 £ 48
W4 113-139 115.2 2866 £05 | 192+03 819 + 21 1140 + 26
W5 126-156 144.4 4224+1.1 | 241+1.1 971 £+ 29 1354 £+ 57
W6 163-205 181.0 378406 | 23.0£0.4 || 1081 =26 | 1517 £47
W7 140-172 201.8 355410 | 203 £ 1.1 || 1155440 | 1681 £ 107
x*ol ndf 4.428/7 X;/ ndf 4567 /7
%200i p1 35.55;1.942 ‘%Booé p1 49.B;t 3.2
s 'ﬁ-noo;
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Figure 3.36: Equivalent noise charge after common mode subtraction versus strip length for all
TOB and TEC module types, in peak (left panel) and deconvolution mode (right panel).

show typically an increased noise and are frequently flagged as noisy, especially when a
fixed noise cut is used for all strips. These edge strips are included in the numbers of flagged
strips, although they are usually fully efficient.

» Although all components (petals, rods, single modules in case of the TIB/TID) were tested
before insertion and components not fulfilling strict quality criteria were rejected, several
defects have been observed during integration. Typical defects are broken optical fibers, bad
APVs (i.e. with many noisy or dead strips), and missing or unreliable I?’C communication
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of complete modules or single chips. Most of the problems are assumed to be caused by
mishandling during insertion or cabling. Since the exchange of components bears a consid-
erable risk, not all defective components have been exchanged. Additional defects could be
introduced by any following handling step, such as cabling of the tracker. The numbers given
below should thus be regarded as a snapshot reflecting the situation right after integration of
the single sub-detectors.

TEC Performance during integration

The TEC petals were integrated sector-wise, where one sector corresponds to one eighth of a TEC
in @, and comprises 18 petals that share nine control rings and four cooling circuits. After integra-
tion of one sector, a read-out test of the full sector was performed at room temperature, with the
coolant at +15°C and mean silicon and hybrid temperatures of about +23°C and +33°C, respec-
tively.

During integration a flaw in the crimping of the connectors of the multiservice power cables
was found. After all such connectors had been replaced on both TECs, the system performance
observed during integration was very robust. In figure 3.37, left side, the common mode subtracted
noise of all strips of both TECs is shown for deconvolution mode. Since the measured noise
depends on the gain of the optical chain, the noise was normalized to the digital output of the
APV (scale on upper x-axis in figure 3.37). In addition, the number of ADC counts in the FED was
converted to ENC according to the following method: with a nominal digital APV output of =4 mA
and a nominal APV gain of 1 MIP/mA for thin sensors, the height of the digital output corresponds
to 8 MIPs or 200 000 electrons. This method allows a direct comparison of the measurements from
different optical channels and delivers an approximate absolute calibration of the equivalent noise
charge. Cross-checks with cosmic muon data performed during TIB/TID integration indicate that
this scaling agrees with the real ENC within 10-20%. Furthermore, the noise depends on the strip
capacitance and thus on the strip length, i.e. on the module type. For this reason the noise of all
strips was normalized to the strip length of modules of ring 1 (8.52 cm). In addition a correction was
applied to TEC- data to account for the fact that they were taken with other chip parameter settings
than TEC+ data. The common mode subtraction was performed assuming a constant common
mode per APV. To extract the mean noise, a gaussian was fitted to the distribution. The resulting
mean common mode subtracted noise amounts to 1693 + 75 electrons in this normalization.

The mean common mode noise, calculated per APV, amounts to (22 £4)% and (21 £3)%
of the mean intrinsic noise in peak and deconvolution mode, respectively (figure 3.38, left, for all
non-defective APVs of TEC+).

The flatness of the noise across the APV is a good indicator for the quality of the grounding.
The relative spread of the total noise (before common mode subtraction), i.e. the RMS of the noise
divided by the mean noise, both calculated per APV, can be used to quantify the flatness. The
relative spread is (2.5 +0.2)% in both read-out modes, as shown in figure 3.38, right, indicating
that the grounding scheme implemented by the TEC works well.

Strips are counted as noisy or dead if their noise is more than five times the RMS of the
noise above or below the mean noise of the respective APV. Edge strips are counted as noisy, if
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Figure 3.37: Normalized common mode subtracted noise of all strips (scaled to the strip length
of ring 1 sensors) of both TECs (left panel) and the TOB (right panel), in deconvolution mode.
Details are described in the text.
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Figure 3.38: Ratio between common mode noise and mean intrinsic noise (left panel) and ratio
between the RMS of the total noise and the mean total noise (right panel), calculated per APV, in
peak and deconvolution mode for all non-defective APVs of TEC+.

their noise is more than seven sigma above the mean noise. In total, there are 3.0 per mille of bad
channels in TEC+, while TEC- has 2.7 per mille of bad channels.

TIB and TID performance during integration

During TIB/TID integration [56], modules and AOHs were assembled onto half layers and disks
and tested extensively for functionality, including pedestals, once a mother cable was completed
(corresponding to a string in the TIB and three single-sided or five double-sided modules in the
TID). Completed disks and half layers were then subjected to a burn-in in a climatic chamber,
during which the structures were operated at a silicon sensor temperature of about —15°C. The
complete half layers and disks were read out during these tests. Typically, the structures underwent
2-3 cooling cycles during a five day measurement period. After-wards disks and half layers were
assembled into the complete TIB/TID+ and TIB/TID- structures and shipped to CERN, where the
last integration operations were performed, such as connection of fibers to the final ribbons and
cabling of the margherita.
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After optimization of the grounding scheme, the noise performance observed in the TIB and
TID structures was very good. For the TIB and TID structures the scaled common mode subtracted
noise of all strips, except for two TIB half-shells for which data were taken under non-final running
conditions and three half-shells for which the proper grounding scheme was not yet implemented,
is shown in figure 3.39 for deconvolution mode. Scaling and common mode subtraction have been
implemented as previously described in this section. These data have been taken under nominal
CMS conditions, with a mean silicon sensor temperature of about —15°C, hybrid temperatures
ranging from —4°C (TID double-sided modules) to —14°C (TIB single-sided modules) and APV
parameters set as intended for this temperature range. The mean noise, taken from a gaussian
fit, amounts to (1233 4-87) electrons in the TIB and (1246 4+ 76) electrons in the TID. Measure-
ments with a silicon sensor temperature of about +10°C and hybrid temperatures of +10°C to
+30°C show a mean noise about 20% larger. In contrast to the TEC, a strip is flagged as dead
if its noise is below 75% of the average noise of the APV, and APV edge strips are not treated
differently. The total number of bad channels is 4.4 per mille in TIB/TID+ and 3.4 per mille in
TIB/TID-.

TOB performance during integration

Fully equipped and tested rods were integrated cooling segment-wise. After a first functional test,
the cooling connection was soldered and a leak test was performed. Then the cooling segment was
cabled, and a full read-out test, including pedestals, was performed at room temperature. During
these measurements, the silicon sensor temperature was about +24°C and the hybrid temperature
about +30°C.

During integration, a sensitivity to pick-up noise has been observed, which leads to non-flat,
wing-like common mode subtracted noise distributions. This sensitivity is especially pronounced
for layers 3 and 4, which are equipped with single-sided 4 APV modules, and within these layers
the effect is worst for modules mounted closest to the CCUM. Defining as a figure of merit the ratio
of the highest noise amplitude (taken from a parabola fit to the noise distribution) to the flat noise
baseline, and counting all APVs with a ratio above 1.25 as “in the wings”, the fraction of APVs in
the wings is about 30% in layers 3 and 4 and about 7% and 1% in layers 1/2 and 5/6, respectively.
In total, 11.4% of all APVs are found to be in the wings according to this criterion. It has been
verified that either with adjusted cluster cuts or with a linear online common mode subtraction the
increase in the cluster width and occupancy is negligible.

The normalized noise of all TOB strips is shown in figure 3.37, right. The tail to high noise
values comes from the non-flat noise distributions. The mean noise from a gaussian fit amounts to
(2049 £ 112) electrons.

Due to this wing-like noise structure, a special algorithm has been adopted to evaluate the
number of dead and noisy strips. A parabola is fitted to the noise distribution of each APV in an
iterative procedure, and strips are flagged as bad if their noise deviates more than ten times the
RMS of the distribution of fit residuals from the fitted function.

Only very few permanent defects, corresponding to 0.6 per mille of lost channels, have been
introduced during TOB integration. Including the number of noisy and dead strips, the number of
bad channels amounts to 0.6 per mille in TOB+ and 1.9 per mille in TOB-.
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Figure 3.39: Normalized common mode subtracted single strip noise for TIB (left panel) and TID
(right panel), in deconvolution mode. Details are described in the text.

Irradiation studies

As already discussed in detail in section 3.1.1, the silicon strip tracker will suffer from a severe
level of radiation during its 10 year long lifetime: up to 1.8 x 104 neqcm*2 for TIB/TID and TEC
and up to 0.5 x 10 neqcm*2 for TOB, assuming an integrated luminosity of 500 fb~!. The radial
and z dependence of the fluence both for fast hadrons and neutrons is described in detail in [15, 16].
Hadrons are expected to dominate in the inner part of the tracker, up to a radius of about 0.5 m,
while neutrons backscattered off the electromagnetic calorimeter dominate further outside. Safety
factors of 1.5 and 2.0 on the fluence are typically applied for TIB/TID and TOB/TEC, respectively.

To ensure that both the FE electronics and the silicon sensors can be operated safely and
with satisfactory performance after such an irradiation, several irradiation tests with neutrons and
protons have been carried out. Neutron irradiation was usually performed at the isochronous cy-
clotron of the Centre de Recherches du Cyclotron, Louvain-la-Neuve, which delivers neutrons with
a mean energy of 20 MeV (hardness factor 1.95 relative to 1 MeV neutrons [58]). Proton irradiation
has been carried out e.g. at the compact cyclotron of the Forschungszentrum Karlsruhe, where a
26 MeV proton beam (hardness factor 1.85 relative to 1 MeV neutrons) with a current of 100 A
and a beam spot diameter of 1 cm is available.

To study the performance of complete irradiated modules, several OB1 and OB2 modules
(table 3.3 for explanation) were irradiated with a proton fluence ranging from 0.1 x 10'4 neqcm_2
to 0.7 x 1014neqcm_2
1.2 x 104 neqcrn_2 [57]. Two TEC W5 modules were irradiated with a proton fluence of
about 1.1 x 10" neggem™2, and three TIB IB1 modules were subjected to a proton fluence of
0.5 x 10" negem ™2 to 2.1 x 10" negem 2. The effect of annealing was simulated by heating the
modules for 80 minutes at 60°C and afterwards storing them at room temperature for at least two

, and one OB2 module was subjected to a neutron fluence of about

hours. To prevent uncontrolled annealing, the modules were stored at —20°C between the irradia-
tion or annealing steps. Measurements were performed at —15°C.

As expected from inversion from n- to p-type doping, the full depletion voltage increased
with the fluence, as shown in figure 3.40 (left). However, the required depletion voltage stays
below 500V, which is the maximum depletion voltage for which the sensors are specified. The
dependence of the depletion voltage on annealing time was studied as well and found to be in
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thick sensors (right panel) in peak (filled symbols) and deconvolution mode (open symbols).

excellent agreement with the Hamburg model [59], with a minimum at 80 minutes annealing time,
corresponding to a 10 day shut down period at room temperature.

The leakage current is expected to increase with fluence, leading to a larger heat dissipation
and increased noise. In figure 3.40 (right) the dependence of the current density on the fluence is
shown. The current related damage rate, defined as the current increase, scaled to 20°C, per sensor
volume and equivalent neutron fluence, amounts to (3.79 £0.27) x 1077 A/cm, which is in good
agreement with literature and measurements from test structures.

Measurements of the signal-to-noise ratio, S/N, of irradiated modules have been performed
with a ?°Sr source. Due to an increase of the noise and a decrease of the charge collection efficiency,
the S/N is expected to decrease with fluence. The dependence of the S/N on the accumulated
fluence for thick and thin sensors in both read-out modes is shown in figure 3.41. For thick sensors,
the S/N decreased from 23 (35) to 15 (21) in deconvolution (peak) mode, while for thin sensors
a decrease from 18 (24) to 13 (18) was observed. These figures ensure a hit finding efficiency of
above 95% even after 10 years of operation at the LHC [60, 61].
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Chapter 4

Electromagnetic calorimeter

The electromagnetic calorimeter of CMS (ECAL) is a hermetic homogeneous calorimeter made of
61200 lead tungstate (PbWQ,) crystals mounted in the central barrel part, closed by 7324 crys-
tals in each of the two endcaps. A preshower detector is placed in front of the endcap crystals.
Avalanche photodiodes (APDs) are used as photodetectors in the barrel and vacuum phototriodes
(VPTs) in the endcaps. The use of high density crystals has allowed the design of a calorimeter
which is fast, has fine granularity and is radiation resistant, all important characteristics in the LHC
environment. One of the driving criteria in the design was the capability to detect the decay to two
photons of the postulated Higgs boson. This capability is enhanced by the good energy resolution
provided by a homogeneous crystal calorimeter.

4.1 Lead tungstate crystals

The characteristics [62] of the Pb WOy crystals make them an appropriate choice for operation at
LHC. The high density (8.28 g/cm?), short radiation length (0.89 cm) and small Moliére radius
(2.2 cm) result in a fine granularity and a compact calorimeter. In recent years, PbWOQy scintil-
lation properties and other qualities have been progressively improved, leading to the mass pro-
duction of optically clear, fast and radiation-hard crystals [63, 64]. The scintillation decay time
of these production crystals is of the same order of magnitude as the LHC bunch crossing time:
about 80% of the light is emitted in 25 ns. The light output is relatively low and varies with tem-
perature (—2.1%°C~! at 18°C [65]): at 18°C about 4.5 photoelectrons per MeV are collected in
both APDs and VPTs. The crystals emit blue-green scintillation light with a broad maximum at
420-430nm [64, 66]. Longitudinal optical transmission and radioluminescence spectra are shown
in figure 4.1.

To exploit the total internal reflection for optimum light collection on the photodetector, the
crystals are polished after machining. For fully polished crystals, the truncated pyramidal shape
makes the light collection non-uniform along the crystal length. The effect is large because of the
high refractive index (n = 2.29 around the peak wavelength [67]) and the needed uniformity [68]
is achieved by depolishing one lateral face. In the endcaps, the light collection is naturally more
uniform because the crystal faces are nearly parallel. Pictures of barrel and endcap crystals with
the photodetectors attached are shown in figure 4.2.
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Figure 4.1: Longitudinal optical transmission (1, left scale) and radioluminescence intensity (2,

right scale) for production PbWOy crystals.

Figure 4.2: PbWOy crystals with photodetectors attached. Left panel: A barrel crystal with the
upper face depolished and the APD capsule. In the insert, a capsule with the two APDs. Right

panel: An endcap crystal and VPT.

The crystals have to withstand the radiation levels and particle fluxes [69] anticipated through-
out the duration of the experiment. Ionizing radiation produces absorption bands through the
formation of colour centres due to oxygen vacancies and impurities in the lattice. The practical
consequence is a wavelength-dependent loss of light transmission without changes to the scintil-
lation mechanism, a damage which can be tracked and corrected for by monitoring the optical
transparency with injected laser light (section 4.9). The damage reaches a dose-rate dependent
equilibrium level which results from a balance between damage and recovery at 18°C [64, 70].
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To ensure an adequate performance throughout LHC operation, the crystals are required to exhibit
radiation hardness properties quantified as an induced light attenuation length (at high dose rate)
greater than approximately 3 times the crystal length even when the damage is saturated. Hadrons
have been measured to induce a specific, cumulative reduction of light transmission, but the ex-
trapolation to LHC conditions indicates that the damage will remain within the limits required for
good ECAL performance [71, 72].

4.2 The ECAL layout and mechanics

The barrel part of the ECAL (EB) covers the pseudorapidity range || < 1.479. The barrel gran-
ularity is 360-fold in ¢ and (2x85)-fold in 7, resulting in a total of 61200 crystals. The crystals
have a tapered shape, slightly varying with position in 1). They are mounted in a quasi-projective
geometry to avoid cracks aligned with particle trajectories, so that their axes make a small angle
(3°) with respect to the vector from the nominal interaction vertex, in both the ¢ and 1 projec-
tions. The crystal cross-section corresponds to approximately 0.0174 x 0.0174 in n-¢ or 22x22
mm? at the front face of crystal, and 26x26 mm? at the rear face. The crystal length is 230 mm
corresponding to 25.8 X,. The barrel crystal volume is 8.14 m> and the weight is 67.4t.

The centres of the front faces of the crystals are at a radius 1.29 m. The crystals are contained
in a thin-walled alveolar structure (submodule). The alveolar wall is 0.1 mm thick and is made of an
aluminium layer, facing the crystal, and two layers of glass fibre-epoxy resin. To avoid oxidation,
a special coating is applied to the aluminium surface. The nominal crystal to crystal distance is
0.35 mm inside a submodule, and 0.5 mm between submodules. To reduce the number of different
types of crystals, each submodule contains only a pair of shapes, left and right reflections of a single
shape. In total, there are 17 such pairs of shapes. The submodules are assembled into modules of
different types, according to the position in 1], each containing 400 or 500 crystals. Four modules,
separated by aluminium conical webs 4-mm thick, are assembled in a supermodule, which contains
1700 crystals (figures 4.3 and 4.4).

In each module, the submodules are held in partial cantilever by an aluminium grid, which
supports their weight from the rear. At the front the submodule free ends are connected together
by pincers that cancel the relative tangential displacements. The submodule cantilever is reduced
by the action of a 4-mm thick cylindrical plate where the front of the submodules are supported
by setpins. Not all the submodules 