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Abstract

Background: The analysis of microbial communities through DNA sequencing brings many challenges: the integration of
different types of data with methods from ecology, genetics, phylogenetics, multivariate statistics, visualization and testing.
With the increased breadth of experimental designs now being pursued, project-specific statistical analyses are often
needed, and these analyses are often difficult (or impossible) for peer researchers to independently reproduce. The vast
majority of the requisite tools for performing these analyses reproducibly are already implemented in R and its extensions
(packages), but with limited support for high throughput microbiome census data.

Results: Here we describe a software project, phyloseq, dedicated to the object-oriented representation and analysis of
microbiome census data in R. It supports importing data from a variety of common formats, as well as many analysis
techniques. These include calibration, filtering, subsetting, agglomeration, multi-table comparisons, diversity analysis,
parallelized Fast UniFrac, ordination methods, and production of publication-quality graphics; all in a manner that is easy to
document, share, and modify. We show how to apply functions from other R packages to phyloseq-represented data,
illustrating the availability of a large number of open source analysis techniques. We discuss the use of phyloseq with tools
for reproducible research, a practice common in other fields but still rare in the analysis of highly parallel microbiome census
data. We have made available all of the materials necessary to completely reproduce the analysis and figures included in this
article, an example of best practices for reproducible research.

Conclusions: The phyloseq project for R is a new open-source software package, freely available on the web from both
GitHub and Bioconductor.
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Introduction

Phylogenetic Sequencing
High-throughput (HT) DNA sequencing [1] is allowing major

advances in microbial ecology studies [2], where our understand-

ing of the presence and abundance of microbial species relies

heavily on the observation of their nucleic acids in a ‘‘culture

independent’’ manner [3]. This nucleic acid sequencing based

census of the inhabitants of microbiome samples is very often now

accompanied with other experimental observations (e.g. clinical,

environmental, metabolomic, etc.), in addition to phylogenetic tree

reconstruction and/or taxonomic classification of the sequences.

Here we refer to this as ‘‘phylogenetic sequencing’’ data if it can be

usefully represented as a contingency table of taxonomic units and

samples, and integrated with the other aforementioned data types.

Importantly, this term – also the namesake of the software here

described – is defined so as to not be specific to the method by

which the phylogenetically relevant microbial census data was

obtained, reflecting the intended level of data abstraction in the

software. The following are two examples of common methods for

producing phylogenetic sequencing data.

Barcoded [2] amplicon sequencing of dozens to hundreds of

samples [4] is a method of phylogenetic sequencing of micro-

biomes, often targeting the small subunit ribosomal RNA (16S

rRNA) gene [3], for which there are also convenient tools [5] and

large reference databases [6–8]. The task of decoding the sample

source of each sequence read by its barcode, followed by similarity

clustering to define operational taxonomic units (OTUs, sometimes

referred to as taxa) [9,10] can be performed by publicly available

packages/pipelines, including QIIME [11], mothur [12], and

PANGEA [13]; as well as virtual machine (VM) and cloud-based

solutions such as the RDP pipeline [7], Pyrotagger [14], CLoVR-

16S [15], Genboree [16], QIIME EC2 image [17], n3phele [18],

and MG-RAST [19].

An alternative experimental method is random ‘‘shotgun’’

sequencing [20,21] of un-amplified metagenomic DNA [22], in

which case OTU clustering and counting is based upon one or

more detectable phylogenetic markers in the metagenomic

sequence fragments, using tools such as phylOTU [23]. It is

worth noting that bias from PCR amplification is avoided in this

latter approach – at the expense of per-sequence efficiency [23] –
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and both methods are now commonly used for phylogenetic

sequencing (Figure 1).

The phyloseq Project
Many of the previously mentioned OTU-clustering applications

also perform additional downstream analyses (File S1). However,

typically an investigator must port the human-unreadable output

data files to other software for additional processing and statistical

analysis specific to the goals of the investigation. The powerful

statistical, ecological, and graphics tools available in R [24] make it

an attractive option for this post-clustering stage of analysis. While

the computational efficiency of compiled languages like Czz [25]

make them appropriate for the expensive but well-defined

requirements of the initial sequence-processing, the subsequent

analysis is vaguely-defined and project specific; requiring instead a

broad set of interactive calculations that is often less computa-

tionally expensive and for which R is well-suited [26]. The public

repositories of open-source R extensions (‘‘packages’’ or ‘‘librar-

ies’’) include many dedicated ecology and phylogenetic packages.

For instance, there are several dozen packages listed in the CRAN

Ecology Task View [27], as well as distory [28], phangorn [29],

picante [30], and now phyloseq [31]. Furthermore, R includes

infrastructure for documenting an analysis in such a way that it

can be easily reproduced and modified by peers [32,33].

In spite of all of these highly relevant tools, we recently

described the lack of a satisfactory standard within Bioconductor [34]

(or R generally) for importing the data files from the most popular

OTU-clustering applications, or representing this data in a

complete, integrated class [31]. One Bioconductor package,

OTUbase [35], pursues some of these goals, but has no support

for phylogenetic trees in its data class, nor support for importing

data from popular/recent OTU-clustering output formats [35,36]

(File S1). We have proposed a new Bioconductor package,

phyloseq (from ‘‘phylogenetic sequencing’’), dedicated to the

object-oriented representation and analysis of phylogenetic

sequencing data in R [31], and supporting common OTU-

clustering output formats like QIIME [11], mothur [12], the RDP-

pipeline [7], Pyrotagger [14], and the biom-format [37].

In this article we describe the conceptual framework and

toolbox of a substantially enhanced phyloseq codebase, including

especially some advanced ordination and graphics capabilities. We

further note that data imported by phyloseq is also accessible to

analyses encoded by a large number of freely available R

packages, in addition to the capabilities directly supported by

phyloseq itself. We will end by discussing the notion of

‘‘reproducible research’’ in the context of phylogenetic sequencing

data, and how phyloseq and R can be used in analyses that are

more open and reproducible than those found in recent common

practice.

Methods

phyloseq Project Key Features
The phyloseq package provides an object-oriented program-

ming infrastructure that simplifies many of the common data

management and preprocessing tasks required during analysis of

phylogenetic sequencing data. This simplified syntax helps

mitigate inconsistency errors and encourages interaction with the

data during preprocessing. The phyloseq package also provides a

set of powerful analysis and graphics functions, building upon

related packages available in R and Bioconductor. It includes or

supports some of the most commonly-needed ecology and

phylogenetic tools, including a consistent interface for calculating

ecological distances and performing dimensional reduction (ordi-

nation). The graphics functions allow users to interactively

produce annotated publication-quality graphics in just one or

two lines of code. The phyloseq package includes extensive

documentation in the form of function- and package-level manuals

embedded in the package’s documentation interface and in a PDF

version on Bioconductor [38], as well as extended reproducible

examples on the phyloseq homepage [39], and open collaborative

development on GitHub [40].

Implementation
The phyloseq package adheres to the requirements for standard

R packages set forth in the official ‘‘Writing R Extensions’’ manual

[40]. It also satisfies additional requirements of the Bioconductor

Figure 1. Example of a phylogenetic sequencing workflow. A diagram of an experimental and analysis workflow for amplicon or shotgun
phylogenetic sequencing. The intended role for phyloseq is indicated.
doi:10.1371/journal.pone.0061217.g001

An R Package for Microbiome Census Data

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e61217



Repository [34], and uses a literate-programming framework

based on structured in-source comments, called roxygen2 [41], for

(re)building the R documentation (.Rd) files and the namespace

specifications. The phyloseq package can be installed on any

system on which R is supported, including Mac OS X, Windows,

and most Linux distributions.

Data Availability
R packages can include example data that is documented with

the same help system as other package objects [58]. This data

becomes available in the R session by invoking the data function

after the package has been loaded. Unless otherwise noted, the

examples provided in this manuscript use example data that is

included in the phyloseq package.

Data Infrastructure and Design
The phyloseq project includes an object-oriented class that

integrates the heterogeneous components of OTU-clustered

phylogenetic sequencing data. Although Bioconductor provides

many utilities for efficient manipulation of DNA sequences,

phyloseq does not currently re-implement any methods for DNA

sequence decoding, processing, or OTU-clustering (Figure 1, File

S1). Instead, phyloseq provides tools to read the output files of the

most common OTU-clustering applications [7,11,12,14], and

represents this data in R as an instance of the main data class. This

multi-component ‘‘experiment-level’’ class — named ‘‘phyloseq’’,

and referred to here as ‘‘the phyloseq-class’’ — is a key design

feature of the phyloseq project, with subsequent user-accessible

functions expecting to operate on an instance of this class as their

sole or primary input data. These functions are described in detail

in the phyloseq manual [7], and are part of a modular workflow

summarized in Figure 2.

Figure 3 summarizes the structure of the phyloseq-class and its

components. Each of the slots are empty (NULL) by default,

although an instance missing an otu_table component is invalid.

Tools in phyloseq that truncate dimensions of one component

(that is, remove samples or OTUs) automatically propagate the

change across all relevant components. In general, researchers

only need to manipulate their ‘‘experiment-level’’ object, making

data (pre)processing less prone to mistakes, and often simplifying

analysis commands to just one data argument.

Analysis Functions
Complementing the data infrastructure, the phyloseq package

provides a set of functions that take a phyloseq object as the

primary data, and performs an analysis and/or graphics task.

Figure 2 summarizes the general workflow within phyloseq, and

lists some of the main functions/tools.

Comparisons of the type and quantity of OTUs observed

between microbiome samples (‘‘beta diversity’’) is often ap-

proached through the calculation of pairwise ecological distances

[42,43], and through dimensional reduction (ordination) methods.

The phyloseq package provides a consistent interface for the most

common approaches to distance calculations and ordination. This

interface is also the foundation for the custom ordination and

heatmap graphics functions described in the next subsection.

In phyloseq the interface for ecological distance calculations is a

single function, distance, that takes a phyloseq object as its data

argument as well as a character string indicating the distance

method, with explicit support for more than 40 ecological distance

methods. This includes a R -native, optionally-parallel implemen-

tation of Fast UniFrac [44] (both weighted [45] and unweighted

[46]). The output is a ‘‘dist’’ class distance matrix (lower-triangle)

appropriate for standard clustering analysis in core R (e.g. hclust),

as well as certain dimensional reduction (ordination) methods.

The interface for performing ordination methods is also a single

function, called ordinate, that takes a phyloseq object as its

primary data argument and a character string indicating the

desired ordination method. For example, the following would

perform (unconstrained) correspondence analysis on the included

‘‘Global Patterns’’ dataset [47].

data GlobalPatternsð Þ

gp ord ca~ordinate GlobalPatterns, }CCA}ð Þ

The ordinate function currently supports correspondence

analysis (CA) [48], constrained correspondence analysis (CCA)

[49], detrended correspondence analysis (DCA) [50], redundancy

analysis (RDA) [51], principal components analysis (PCA) [52],

double principle coordinates analysis (DPCoA) [53], multidimen-

sional scaling (MDS, PCoA) [54], and non-metric multidimen-

sional scaling (NMDS) [55]. For CA, CCA, DCA, RDA, and

DPCoA, the ordination is based upon an evaluation of abundance

values (in the case of DPCoA, the patristic distances between

OTUs on the phylogenetic tree is also used), but not an ecological

distance. For MDS and NMDS, the ordinate function requires a

pre-calculated distance matrix (‘‘dist’’ object) or the name of a

supported ecological distance method. For example, PCoA/MDS

can be calculated on an unweighted UniFrac distance matrix [46],

using the following command:

gp mds uf~ordinate GlobalPatterns, }MDS}, }unifrac}ð Þ

There are many combinations of approaches possible (even

extending into time-series of table pairs), and the optimal

approach depends on the goals of the experiment and character-

istics of the data [56]. The phyloseq package also includes a

specialized function for displaying ordination results in different

ways, described in the following section.

Specialized Graphics
One of the key features of the phyloseq package is a set of

graphics functions custom-tailored for phylogenetic sequencing

analysis, built using the ggplot2 package [57]. The ggplot2

package is an implementation of Wilkinson’s The Grammar of

Graphics, which provides an object-oriented description of

analytical graphics that emphasizes the separation of data and

its mapping to aesthetic attributes [58]. In the phyloseq package,

functions having names beginning with ‘‘plot_’’ require a phyloseq

object as input data, and return a ggplot2 graphics object. These

plot_ functions support optional mapping of color, size, and shape

aesthetics to sample or OTU variables — usually by providing the

name of the variable or taxonomic rank as a character string (E.g.

color = ‘‘SampleType’’). Legends are automatically generated

based on the data and aesthetic mappings (not true of the base

R graphics), and all features of these graphics can be further

modified in R via functions/options in the ggplot2 package.

The following list summarizes the key graphics-producing

functions in phyloseq, which are also demonstrated in Figure 4,

and in phyloseq’s online tutorials [39]. File S2 provides the

complete R code for creating Figures 4 and 5. We have also

included some additional examples of graphics created by

plot_ordination (Figure 5). They emphasize different aspects of

ordination results, and the best choice depends heavily on

An R Package for Microbiome Census Data
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Figure 2. Analysis workflow using phyloseq. The workflow starts with the results of OTU clustering and independently-measured sample data
(Input, top left), and ends at various analytic procedures available in R for inference and validation. In between are key functions for preprocessing
and graphics. Rounded rectangles and diamond shapes represent functions and data objects, respectively, further described in Figure 3.
doi:10.1371/journal.pone.0061217.g002

Figure 3. The ‘‘phyloseq’’ class. The phyloseq class is an experiment-level data storage class defined by the phyloseq package for representing
phylogenetic sequencing data. Most functions in the phyloseq package expect an instance of this class as their primary argument. See the phyloseq
manual [38] for a complete list of functions.
doi:10.1371/journal.pone.0061217.g003
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Figure 4. Graphic functions of the phyloseq package. The phyloseq class is an experiment-level data storage class defined by the phyloseq
package for representing phylogenetic sequencing data. Most functions in the phyloseq package expect an instance of this class as their primary
argument. See the phyloseq manual The Global Patterns [47] and Enterotypes [91] datasets are included with the phyloseq package. The Global

An R Package for Microbiome Census Data
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Patterns data was preprocessed such that each sample was transformed to the same total read depth, and OTUs were trimmed that were not
observed at least 3 times in 20% of samples or had a coefficient of variation# 3.0 across all samples. For the plot_tree and plot_bar subplots, only the
Bacteroidetes phylum is shown. Each subplot title indicates the plot function that produced it. Complete details for reproducing this figure are
provided in File S2. All of these functions return a ggplot object that can be further customized/modified by tools in the ggplot2 package [57]. See
additional descriptions of each function in the body text, and at the phyloseq homepage [39].
doi:10.1371/journal.pone.0061217.g004

Figure 5. plot_ordination display methods included in phyloseq. Each panel uses a ‘‘Bacteroidetes-only’’ subset of the preprocessed ‘‘Global
Patterns’’ dataset that was also used in Figure 4. The coordinates are derived from an unconstrained correspondence analysis [62]. Different panels
illustrate different displays of the ordination results using the type argument to the plot_ordination function. (Top Left) Example of a samples-only
display, with the ‘‘SampleType’’ mapped to the color aesthetic, and a filled-polygon layer to emphasize plot regions where sample types co-occur.
(Top Left Insert) A ‘‘scree’’ plot of the eigenvalues associated with each axis, which indicates the proportion of total variability represented in each
axis. (Top Right) Biplot representation in which samples and OTUs ordination results are overlaid. Clumps of OTUs appear to co-occur with different
sample types, and some correlation with taxonomic phylum is also evident. (Middle) An OTUs-only plot that has been faceted (separated into panels)
by class, with a two-dimensional density estimate overlain in blue. This view shows clearly a lack of association between the Sphingobacteria and
Flavobacteria classes with fecal samples, which appear to be enriched in a subset of the Bacteroidia (relative to other OTUs in this Bacteroidetes-only
dataset). Meanwhile, subsets of Bacteroidia appear to be enriched within multiple sample types. (Bottom) The ‘‘split’’ type for this graphic, in which
both samples-only and OTUs-only plots are created, and shown side-by-side with one legend and shared vertical axis. Both the ‘‘biplot’’ and ‘‘split’’
options allow dual projections of both OTU- and sample-space.
doi:10.1371/journal.pone.0061217.g005
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characteristics of the data and research questions. The provided

code also demonstrates a custom modification to the ggplot2

graphic, in this case the addition of a two-dimensional density

estimate to the ‘‘OTUs-only’’ plot (File S2).

1. plot_ordination. This is the main function for plotting the

results of an ordination. It currently supports four different

representations of the ordination results: samples-only, OTUs-

only, ‘‘biplot’’ (combined) representation, and ‘‘split’’. A

demonstration of these different options is provided in

Figure 5. As can be seen in these examples, the ‘‘biplot’’ and

‘‘split’’ options support dual projections of both OTU- and

sample-space. Additional parameters easily map the respective

sample variable or taxonomic rank to color, size, or shape

aesthetics.

2. plot_heatmap. This is a special implementation of the

ordination-organized heat map similar to the NeatMap

package [59]. Briefly, the abundance matrix is represented as

a grid of colored tiles, with the color of the tiles mapped to the

(usually transformed) abundance value. The ordering of the

OTUs and sample indices in this representation is critical for

discriminating any patterns. Traditionally, hierarchical cluster-

ing methods have been used for this organization; but, as

Rajaram and Oono recently pointed out [59], this has the

potential to misrepresent the data when deeply-branching

elements are placed next to one another arbitrarily. Instead,

the samples (and optionally, OTUs) are reordered based on

their radial coordinate angle in the first two axes of an

ordination. For the plot_heatmap function, any of the

distances/ordinations supported by the distance and ordinate

functions can be used, with the default being non-metric

multidimensional scaling. Any arbitrary color scale can be

selected, as well as any choice of numerical transformation for

scaling the mapping of color shades to abundance.

3. plot_network. This function plots an igraph-class network [60]

representing binary relationships between samples or OTUs.

The network is calculated using the make_network function

with phyloseq data as input and a desired ecological distance

and threshold value. Unlike ordination, where most of the data

structure is summarized by the relative position in two or more

axes, the data is instead summarized by connections between

samples (or OTUs) drawn with straight lines. Two samples are

considered ‘‘connected’’ if the distance between them is less

than a user-defined threshold. The relative position of points is

optimized for the visual display of network properties, but is

otherwise arbitrary. Any of the ecological distances supported

by the distance function can be selected, and this can be a

powerful representation of major clusters among samples or

OTUs, provided the value of the distance threshold has been

chosen carefully.

4. plot_tree. This function facilitates easy graphical rendering/

investigation of the phylogenetic tree, with sample data

overlaid. In some cases an annotated tree can be a powerful

representation of an underlying evolutionary structure. The

plot_tree function optionally places successive points next to

the tips of the tree, indicating the samples in which each OTU

was observed. These points can have their color, shape, and

size aesthetics mapped to sample variables, revealing the

correspondence of environmental variables on specific regions

of the evolutionary tree. Standard ggplot2 customizations are

supported, and this is, to our knowledge, the only function for

ggplot2-based phylogenetic trees currently available in the

CRAN/Bioconductor repositories. For phylogenetic sequenc-

ing of samples with large richness, some of the options in this

function will be prohibitively slow to render or too dense to be

interpretable, a drawback to summarizing phylogenetic

sequencing data using trees. One suggestion is to either

agglomerate or subset the data such that there are not more

than 200 or so OTUs (tree tips) on a given plot, sometimes less

depending on the complexity of the additional annotations

being mapped to the tree. In many modern datasets 200 OTUs

(or less) will be insufficient to summarize the entire dataset, in

which case one or more of the other plot methods is suggested.

5. plot_bar. Although sometimes very complicated, a well-

organized bar plot can be an effective graphical means for

direct quantitative comparison of abundance values, and we

note that statisticians generally discourage the use of pie-charts

[61]. The plot_bar function takes as input a phyloseq dataset

and a collection of arbitrary expressions for grouping the data

based upon taxonomic rank and sample variables. The

returned graphic represents each abundance value as the

height of a rectangular block that is outlined by a thin black

line and filled with the corresponding color of the user-specified

sample or taxonomic variable, grey by default. Each of these

OTU abundance rectangles corresponding to the same

horizontal position (usually sample, or sample group) are

stacked in order of abundance, such that the aggregate height

of the stacked bar is also quantitatively informative.

6. plot_richness . This function creates plots of richness estimates

of each sample in a phyloseq data object, allowing for

horizontal grouping and color shading according to additional

sample variables. Differences in richness (alpha diversity)

between samples is often one of the first questions asked of

phylogenetic sequencing data.

Normalization and Standardization
In multivariate analyses such as PCA, large differences in

variances between columns are corrected by standardizing each

column; i.e. dividing each column by its standard deviation. Thus

each column will have the same weight in the multivariate

analysis. For OTU abundance tables, such a procedure is

inappropriate as the disparities in column sums can be 100-fold.

Methods based on chi-squared distances rather than variances

deal with this by comparing weighted column profiles [62],

computed as relative abundances for each OTU within a column,

with the overall column sum retained as a weighting factor.

However, chi-square distances are sums of squares and can be

overly sensitive to outliers and sequencing ‘‘jackpot’’ effects such as

those occurring in pyrosequencing data [63]. Bray-Curtis distances

can be a useful alternative, as it is based on the L
1 distance

between profiles, as long as the differences in actual column sums

are also accounted for in the final study. The other approach to

the problem of disparities between column sums has been to

subsample the over-abundant columns down to the same number

as the smaller ones. However this results in a loss of information,

rarely an optimal procedure in statistical contexts. This subsam-

pling procedure is inspired by the popular idea of rarefaction in

coverage studies first invented by Sanders [64], but has yet to be

proved beneficial for all microbial community structures. The

parallels between gene expression microarray analyses and

microbial abundance analyses was mentioned in [65], which

proposed several expression-inspired strategies for robustifying

abundance measurements. The main points were that rankings

and thresholding are important in the presence of noise and high

variability in sequence depths. As in gene expression analysis

filtering the OTUs is beneficial, especially in the latter multiple

testing adjustments. The phyloseq package enables easy filtering

An R Package for Microbiome Census Data
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and rank transformations in the same vein as robust multi-array

averaging (rma) [66]. We provide further details in (McMurdie

and Holmes, [67]).

Confirmatory Analyses
Although useful for exploring and summarizing microbiome

data, many of the graphics and ordination methods discussed here

are not formal tests of any particular hypothesis. The most

common framework for testing in microbiome studies is the

comparisons of samples from different categories (e.g. healthy and

obese; control and treated; different environments). Standard test

statistics include the t-test, the paired permutation t-test, and

ANOVA type tests based on F or pseudo-F statistics. However,

microbiome data have two particularities. First, the raw

abundance counts are never normally distributed, so the preferred

methods are nonparametric. Second, there is contiguous informa-

tion available about the relationships between OTUs, as well as for

variables measured on the samples, so testing is sometimes more

elaborate than a two-sample test. The hypergeometric test, also

known as Fisher’s exact test, is used in cases when we have a test

statistic for each of the different OTUs. The goal is to confirm that

a certain property of these significant OTUs is overrepresented

compared to the general population of OTUs, often called ‘‘the

universe’’. For instance in Holmes et al [65] and Nelson et al [68]

several phyla were shown to be significantly over-abundant in IBS

rats as compared to healthy controls using this hypergeometric

test.

An organizing principle in many nonparametric testing

protocols is that the repetition of an analysis multiple times

enables the user to control for multiple testing, or to evaluate the

quality of estimators or the optimal values of tuning parameters.

Modern confirmatory analyses currently depend on these repeated

analyses under various data perturbation schemes, of which

resampling, permutations, and Monte Carlo simulations are the

most common. For instance the bootstrap uses many thousands of

analyses of resampled data to address problems such as statistical

stability or bias estimation [69], and can even provide confidence

regions [69] for nonstandard parameters, such as phylogenetic

trees [70]. Repeating analyses on permuted data can allow for

control of the probability of encountering 1 or more false positives

(falsely rejected nulls) among your group of simultaneous

hypotheses, also called the Family Wise Error Rate (FWER). For

instance, Westfall and Young’s permutation-based minP proce-

dure controls the FWER [71] and is implemented within the

multtest package [72]. The phyloseq package interfaces with minP

in multtest through a wrapper function, called mt. In the following

example code we use the mt wrapper to control the FWER while

simultaneously testing whether each OTU correlates with the

‘‘Enterotypes’’ classification of the samples. Note that we first

remove samples that were not assigned an enterotype by the

original authors (Table 1).

data enterotypeð Þ

x~subset samples enterotype, !is:na Enterotypeð Þð Þ

head mt x, }Enterotype}, test~}f}ð Þ, 8ð Þ

Results and Discussion

As the complexity and sophistication of phylogenetic sequencing

experiments continues to increase, it is clear that a ‘‘one-analysis

fits all’’ approach is not sufficient. While it is often useful and

convenient to have common analyses coupled within the

application that decodes the sequences and clusters OTUs, we

posit that a separate set of flexible open-source analytical tools is

also needed that can be reproduced consistently by peers, and

easily applied to new datasets and data sources. It should include a

large library of statistical functions, and be independent of the

choice of OTU-clustering method or sequencing technology. The

phyloseq package helps satisfy this need by reducing the effort

necessary to analyze OTU-clustered phylogenetic sequencing data

via the R language and interactive computing environment.

Reproducible Research and Sharing
In exploratory statistical work it is easy to produce biased results

[73] through poorly chosen metrics or tests, a failure to properly

control for multiple inferences, undisclosed data ‘‘pruning’’, and

probably many other means. Although not commonly required

[74–76], an important defense against biased (or poorly-supported)

findings is a higher standard for reproducibility in published

research [77], in which journal articles are accompanied by

sufficient data and software such that all presented analyses, tables,

and figures can be reproduced exactly and with minimal effort

[75]. In this context of highly-parallel phylogenetic-sequencing

experiments, reproducible research can be partially facilitated by

emerging standards for experimental design [78] and file format

[37]. Virtual machine image and cloud-deployed ‘‘pipeline’’

analyses [11,15,19] can further increase accessibility of analyses

by mitigating the need for expensive computing hardware while

also avoiding complicated installation procedures. However, the

use of publicly available ‘‘pipeline’’ tools does not fully meet the

reproducibility standard unless accompanied with the complete

code and data used in the analysis being published [75]. This is

especially important when considering the many choices that are

involved in decoding, OTU-clustering, and preprocessing; as well

as the many varied approaches to incorporating sample covariates

and performing multivariate analyses on complex data. The recent

release of the HMP data and multiple articles on the results from

their analyses underscore this fact. Thresholding and noise filtering

were done independently by each team, but no overall robustness

study was performed [79]. Changes early in the analysis pipeline

could have downstream effects that are now prohibitively difficult

or impossible to evaluate. Generally speaking, the preprocessing of

Table 1. Results from the mt function on the ‘‘Enterotypes’’
dataset.

genera index test stat raw-p adj-p

Prevotella 207 344.73 0.0001 0.0158

Bacteroides 203 85.01 0.0001 0.0158

Blautia 187 19.52 0.0001 0.0158

Bryantella 503 16.38 0.0001 0.0158

Parabacteroides 205 12.89 0.0001 0.0158

Alistipes 208 8.71 0.0002 0.0301

Bifidobacterium 240 9.29 0.0004 0.0560

Holdemania 201 7.64 0.0009 0.1146

The original ‘‘Enterotypes’’ dataset [91] (included in phyloseq) with OTU-wise
testing of enterotype groups. Tests are a permutation-adjusted F-test using the
Family-Wise Error Rate (FWER) as correction for multiple inferences (‘‘adj-p’’
column). Not surprisingly, Prevotella and Bacteroides top the list, as they were
major components of the ‘‘Enterotypes’’ classification described in the original
article [91].
doi:10.1371/journal.pone.0061217.t001

An R Package for Microbiome Census Data

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e61217



OTU abundance data through filtering, normalizing, centering,

shrinking, and other transformations is a common practice and

necessary for analysis [66], but varies widely among researchers

and is often difficult to reproduce. This is particularly true when

the preprocessing transformations are the result of ‘‘manual’’

adjustments in a spreadsheet, custom code/script that is not

included in the publication, or random subsampling (‘‘rarefying’’

to even sequencing effort) with no reported seed. A related

example is the (often not-so) reproducible choice of tuning

parameters and perturbation-based statistical validation proce-

dures, allowing for the easy testing of alternatives and robustness of

results. To a large extent this revisits many of the same issues of

reproducible research [80–82] that have been addressed over the

last decade for the analysis of microarray data [66], and for which

there are many proven tools already available in Bioconductor/R.

The emphasis of preprocessing tools in phyloseq is intended to

decrease the extent to which these steps constitute opaque and

idiosyncratic efforts by investigators, while making the results of

different studies more comparable.

One of the goals of the phyloseq project is to help close the gap

in reproducible research that presently exists between pipeline

results and the additional analyses required by investigators. This

can be achieved when phyloseq is used (possibly with other R

packages) in conjunction with documentation tools such as Sweave

[32], knitr [33], iPython [83] Notebook invoking the rmagic

extension, or ‘‘ R flavored markdown’’ (RFM) [84]. The Sweave-

format approach is part of the reproducible research standards

strongly encouraged by the journal Biostatistics [81], as well as

many disciplines related to statistics and bioinformatics [77,85].

The recently-described RFM format and iPython Notebook can

also work very well for cases where a web-browser is a satisfactory

documentation delivery medium, with RFM being our preferred

source format for publishing reproducible online tutorials with

embedded code and figures (HTML5) [39,86]. We emphasize that

the benefits of reproducibility are not contingent on ‘‘pretty’’ code

[87], and we encourage researchers in the field to make their code

available even if they feel insecure about its programmatic

elegance. As an illustrative example, we have made available the

Sweave (.Rnw) and supporting files required to completely

reproduce this article, including especially the complete source

as an RFM file (.Rmd) with its associated output HTML file, both

of which provide the preprocessing steps and graphics commands

needed to exactly reproduce each figure (File S2). We have also

published a GitHub repository dedicated to reproducible demon-

strations of analyses with phyloseq [86].

Extending phyloseq
It is important to note that the new phyloseq-class is a significant

departure from the originally-proposed phyloseq-class structure

[31], which used nested multiple inheritance and a naming

convention. It was a valid approach in principle, but was an overly

complex approach for the goal of representing a phylogenetic

sequencing experiment as a single object. The updated phyloseq-

class is simple to extend for developers and easy to explain to users

(Figure 3). In general, the downstream analysis and plotting

functions that might operate on an instance of the phyloseq-class

do not need to (re)perform common validity checks because these

checks are consolidated as part of the phyloseq-constructor method.

Analysis tools available in R but not explicitly wrapped in

phyloseq are nevertheless available to users and developers via

accessors and other data infrastructure tools. This leverages the

fact that phyloseq data components are based on standard R data

classes and easily used in other package settings in R. For example,

we have included example code that illustrates the use of the

bioenv function from the vegan package, starting with data

represented by the phyloseq-class (See File S2 for code, and the

phyloseq demo [86]). Similarly, as an open-source package in an

open language/framework (R), phyloseq can be easily included at

the relevant steps in pipelines, workbenches, and GUIs now under

active development (E.g. ClovR [15], MG-RAST [19], QIIME

[11], mcaGUI [88]). This represents a means for investigators with

limited programming literacy to still benefit from some of the tools

included in, or facilitated by, phyloseq.

Conclusions

The phyloseq project is a new open-source software tool for

statistical analysis of phylogenetic sequencing data within the R

programming language and environment. The tools in phyloseq

make it easy to read the data output of several of the most

common OTU clustering pipelines, and also represents this data in

a unified, integrated form amenable to many modern analysis

methods. With this integrated representation of the data it is easy

to use supervised methods — such as canonical correspondence

analysis, discriminant correspondence analysis, sparse linear

discriminant analysis, etc. — to explain clinical or environmental

response variables. We hope that this will provide a gateway for

users to take their analyses towards more robust nonparametric

alternatives to classical least squares methods, and allow them to

interact graphically with their data more easily and efficiently. By

leveraging existing R infrastructure for reproducible research, the

phyloseq project also enables reproducible preprocessing, analysis,

and publication-quality graphics production — such that it is easy

to document, share, and modify analyses of phylogenetic

sequencing data. The phyloseq package is released on Biocon-

ductor [34] and developed collaboratively on GitHub [39].

Availability and Requirements

Project name: phyloseq

Project Stable Release: http://www.bioconductor.org/

packages/release/bioc/html/phyloseq.html

Project Home Page: http://joey711.github.com/phyloseq/

Project Issue Tracker: https://github.com/joey711/

phyloseq/issues

Project Demo Page: http://joey711.github.com/phyloseq-

demo/

Operating System(s): Platform Independent

Programming Language(s): R

Other Requirements: R, R packages (ade4, ape, Biostrings,

foreach, ggplot2, igraph0, multtest, picante, plyr, reshape,

RJSONIO, scales, vegan)

License: AGPL-3

Supporting Information

File S1 Summary of comparison between phyloseq and

currently available software. This PDF file contains a table

summarizing a comparison of supported capabilities between

phyloseq and QIIME [11], mothur [12], and the pair of packages

OTUbase [35] and mcaGUI [88]. A ‘‘+’’ or ‘‘–’’ indicates that the

capability is not directly supported, respectively. A symbol or word

instead of ‘‘+’’ implies that the capability is supported, but with an

extra caveat or detail, further defined below the table, if necessary.

This is not a comprehensive summary of the capabilities of each

packages, but rather the capabilities of relevance to this article.

The abbreviations CA, DCA, RDA, and DPCoA stand for the

ordination methods correspondence analysis, detrended corre-

spondence analysis, redundancy analysis, and double principal
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coordinates analysis, respectively. Note that in some cases the

capabilities deemed ‘‘+’’ in this table are only supported for

amplicon sequencing based data, sometimes from a specific

sequencing platform and with the 16S rRNA gene as target.

However, the phyloseq package is implemented at a stage in the

analysis process that can be more generally applied to any

phylogenetic sequencing, including non-standard amplicon tar-

gets, shotgun metagenome sequencing, etc.

(PDF)

File S2 Source materials for reproducing this manu-

script. This is a compressed .zip directory containing the main

source file in Sweave .Rnw format [32], as well as the additional

files necessary to completely recreate the original manuscript

submitted to PLoS ONE. For the uninitiated, Sweave is a R/

LaTeX2e interleaved hybrid language format [32] that allows

advanced typesetting description to accompany R code and its

output (including graphics). Also included is the RFM source file

that was used to create Figures 4 and 5, and its accompanying

HTML output that includes additional documentation details,

links, and intermediate graphics. This latter file is ‘‘sourced’’ (re-

run) by the Sweave commands if any of the expected output files

are missing. This supporting information zip file also includes R

code (at the end of the RFM/HTML files) that demonstrates how

to use a phyloseq data object as an argument to other R functions.

In this particular example, the bioenv function from the vegan

package [92] is demonstrated.

(ZIP)
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