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Abstract

Gene families are growing rapidly, but standard methods for inferring phyloge-

nies do not scale to alignments with over 10,000 sequences. We present FastTree,

a method for constructing large phylogenies and for estimating their reliability.

Instead of storing a distance matrix, FastTree stores sequence profiles of internal

nodes in the tree. FastTree uses these profiles to implement neighbor-joining and

uses heuristics to quickly identify candidate joins. FastTree then uses nearest-

neighbor interchanges to reduce the length of the tree. For an alignment with N

sequences, L sites, and a different characters, a distance matrix requires O(N2)

space and O(N2L) time, but FastTree requires just O(NLa + N
√

N) memory

and O(N
√

N log(N)La) time. To estimate the tree’s reliability, FastTree uses

local bootstrapping, which gives another 100-fold speedup over a distance ma-

trix. For example, FastTree computed a tree and support values for 158,022

distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just

computing pairwise Jukes-Cantor distances and storing them, without inferring

a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In

simulations, FastTree was slightly more accurate than neighbor joining, BIONJ,

or FastME; on genuine alignments, FastTree’s topologies had higher likelihoods.

FastTree is available at http://microbesonline.org/fasttree.

Introduction

Inferring phylogenies from biological sequences is the fundamental method in

molecular evolution and has many applications in taxonomy and for predicting

structure and biological function. In general, sequences are identified as homol-

ogous and aligned, and then a phylogeny is inferred. Large alignments can be

constructed efficiently, in time linear in the number of sequences, by aligning
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the sequences to a profile instead of to each other, as with position-specific blast

or hmmalign (Schaffer et al. (2001); http://hmmer.janelia.org/).

Given an alignment, neighbor joining and related minimum-evolution meth-

ods are the fastest and most scalable approaches for inferring phylogenies (Saitou

and Nei, 1987; Studier and Keppler, 1988; Desper and Gascuel, 2002). All of

these methods rely on a distance matrix that stores an estimate of the evolu-

tionary distance between each pair of sequences. Computing an entry in the

distance matrix requires comparing the characters at each position in the align-

ment and hence requires O(L) time, where L is the number of positions. Thus,

the distance matrix takes O(N2L) time to compute, where N is the number of

sequences, and O(N2) space to store.

Given a distance matrix, neighbor joining performs a greedy search for a tree

of minimal length, according to a local estimate of the length of each branch

(Gascuel and Steel, 2006). More specifically, neighbor joining begins with the

tree as a star topology, and it iteratively refines the tree, by joining the best

pair of nodes together, until the tree is fully resolved. Each step considers

O(N2) possible joins, so the standard neighbor-joining algorithm requires O(N3)

time to infer a tree from a distance matrix. This can be reduced to O(N2) or

O(N2 log N) time, either by using heuristics to consider fewer joins (Elias and

Lagergren, 2005; Evans et al., 2006) or by using additional O(N2) memory

(Simonsen et al., 2008; Zaslavsky and Tatusova, 2008). FastME is another

minimum-evolution method that takes only O(N2) time (Desper and Gascuel,

2002). With any of these optimized methods, the O(N2L) time to compute the

distance matrix dominates the time.

As DNA sequencing accelerates, the memory and CPU requirements of the

distance-matrix approach are becoming prohibitive. For example, an alignment

of full-length 16S ribosomal RNAs contains over 160,000 distinct sequences (De-
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Santis et al. (2006); http://greengenes.lbl.gov). Similarly, the MicrobesOnline

database, which provides phylogenies for all protein families from prokaryotic

genomes, contains protein families with over 100,000 distinct sequences (Alm

et al. (2005); http://www.microbesonline.org/). The distance matrix for fami-

lies with 100,000-200,000 members requires 20-80 gigabytes (GB) of memory to

store (a 4-byte floating point value for each of N(N − 1)/2 pairs). Although

computers with this much memory are available, the typical node in a compute

cluster has an order of magnitude less memory. Furthermore, DNA sequencing

technology is improving rapidly, and the distance matrix’s size scales as the

square of the family’s size, so we expect these problems to become much more

severe. Finally, most of the methods that construct a tree from a distance ma-

trix in O(N2) time, such as FastME and the exact O(N2) implementations of

neighbor joining, require additional O(N2) memory.

Whatever the method used, inferred phylogenies often contain errors, and

so it is important to estimate the reliability of the result (Nei et al., 1998). The

standard method to estimate reliability is to use the bootstrap: to resample

the columns of the alignment, to rerun the method 100-1,000 times, to compare

the resulting trees to each other or to the tree inferred from the full alignment,

and to count the number of times that each split occurs in the resulting trees

(Felsenstein, 1985). (A split is the two sets of leaves on either side of an internal

edge.) Unfortunately, bootstrapping is a minimum of 100 times slower than the

underlying phylogenetic inference, and comparing the trees to each other is also

a non-trivial computation. In principle, the resampled trees could be compared

to the original tree in O(N2) time and O(N) space by hashing the splits in the

tree. However, the tree-comparison tools that we are aware of require O(N3)

time and O(N2) space.

Although building phylogenetic trees for large gene families is challenging,
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it is important to do so and not just to build trees for small sets of selected ho-

mologs. Analyzing all of the sequences is important for taxonomy, for predicting

gene function, for classifying environmental DNA sequences, and for identify-

ing functional residues (Eisen, 1998; Engelhardt et al., 2005; von Mering et al.,

2007; Lichtarge et al., 2003). Furthermore, omitting sequences might change

the biological interpretation of the result, especially in prokaryotes: because

of horizontal gene transfer, it is difficult to know which homologs are relevant

without building a tree. Finally, for web sites that support interactive use of

phylogenetic trees, it is desirable to compute trees for all of the genes beforehand

(Li et al. (2006); http://www.treefam.org/; http://www.microbesonline.org/).

Our Approach

We present FastTree, which uses four ideas to reduce the space and time com-

plexity of inferring a phylogeny from an alignment (Figure 1). First, FastTree

implements neighbor joining by storing profiles for the internal nodes in the tree

instead of storing a distance matrix. Each profile includes a frequency vector

for each position, and the profile of an internal node is the weighted average of

its childrens’ profiles. For example, if we join two leaves i and j, and i has an A

at a position and j has a G, then the profile of ij at that position will be 50% A

and 50% G (and 0% for other characters). The intuition behind using profiles is

that the average of the distances between the sequences in two subtrees A and

B equals the distance between profile(A) and profile(B), because profile(A) is

the average of the sequences in A. FastTree uses these profiles to compute the

distances between internal nodes in the tree and also the total distance from a

node to all other nodes, which is also required for neighbor joining. The pro-

files require a total of O(NLa) space, where a is the size of the alphabet (20

for protein sequences and 4 for nucleotide sequences), instead of O(N2) space
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for the distance matrix. However, the time required for neighbor-joining with

exhaustive search rises from O(N3) to O(N3La), because every distance has to

be recomputed on demand in O(La) time.

Second, FastTree uses a combination of previously-published heuristics (Elias

and Lagergren, 2005; Evans et al., 2006) and a new “top hits” heuristic to reduce

the number of joins considered. Whereas traditional neighbor joining considers

O(N3) possible joins, and optimized variants have considered O(N2) possible

joins (the size of the distance matrix), FastTree considers O(N
√

N log N) possi-

ble joins. Thus, in theory, FastTree takes O(N
√

N log(N)La) time. In practice,

FastTree is faster than computing the distance matrix. These heuristics require

additional O(N
√

N) memory, raising the total storage requirement for FastTree

to O(NLa + N
√

N), which is still much less than O(N2).

Third, FastTree refines the initial topology with nearest-neighbor inter-

changes (NNIs). Given an unrooted tree ((A,B), (C,D)), where A, B, C, and D

may be sub-trees rather than individual sequences, FastTree compares the pro-

files of A, B, C, and D, and determines whether alternate topologies ((A,C),(B,D))

or ((A,D),(B,C)) would reduce the length of the tree. These NNIs are similar

to those of FastME, although FastME uses a distance matrix (Desper and Gas-

cuel, 2002). FastTree’s NNIs take O(N log(N)La) additional time and O(NLa)

additional space. In practice, the NNIs take much less time than computing the

initial topology, and they improve the quality of the tree.

Fourth, FastTree computes a local bootstrap value for each internal split

((A,B), (C,D)) by resampling the columns of the profiles and counting the

fraction of resamples that support ((A,B), (C,D)) over the alternate topolo-

gies ((A,C), (B,D)) or ((A,D), (B,C)). The local bootstrap has been used for

maximum-likelihood trees (Kishino et al., 1990), but cannot be used with dis-

tance matrices. Computing the local bootstrap takes O(bNLa) time, where b
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is the number of bootstrap samples. Even with 1,000 resamples, this takes less

than a minute for an alignment of over 8,000 protein sequences and 394 columns.

Thus, local bootstrap gives FastTree an additional 100-fold speed-up over dis-

tance matrix methods, in which the entire computation must be repeated for

each sample. However, the local bootstrap should be interpreted more conserva-

tively than the traditional bootstrap. Whereas traditional bootstrap estimates

the probability that the split is correct (Efron et al., 1996), local bootstrap es-

timates the probability that the split is correct if we assume that A, B, C, and

D are subtrees of the true tree.

Below, we describe FastTree in more detail. Then, we show that in realistic

simulations, FastTree is slightly more accurate than other minimum-evolution

methods such as neighbor joining, BIONJ, or FastME. On genuine alignments,

FastTree topologies tend to have higher likelihoods than topologies from other

minimum-evolution methods, which also suggests that FastTree gives higher-

quality results. For both simulated and genuine alignments, FastTree’s heuris-

tics do not lead to any measurable reduction in quality. For large families, Fast-

Tree requires less CPU time and far less memory than computing and storing a

distance matrix. Finally, we show that the local bootstrap is a good indicator of

whether each split in the inferred topology is correct, and it is orders of magni-

tude faster than the traditional bootstrap. We believe that FastTree is the first

practical method for computing accurate phylogenies, including support values,

for alignments with tens or hundreds of thousands of sequences.
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Materials and Methods

FastTree

A rough outline of FastTree is shown at the bottom of Figure 1. Before we

explain how FastTree implements neighbor joining, we explain how it computes

distances between sequences and how it computes distances between profiles.

We then explain how it computes distances between internal nodes and how it

calculates the neighbor joining criterion, which is used to select the best join.

We also describe the heuristics that it uses to reduce the number of joins that it

considers. Finally, we explain the steps after neighbor joining: nearest-neighbor

interchanges, the local bootstrap, and estimating the branch lengths for the final

topology. For formulas, derivations, and technical details, see Supplementary

Note 1.

Distances Between Sequences

FastTree uses both corrected and uncorrected distances. FastTree corrects

the distances for multiple substitutions during NNIs, computing final branch

lengths, and local bootstrap, but not during neighbor-joining. For nucleotide se-

quences, FastTree’s uncorrected distance du is the fraction of positions that dif-

fer, and the corrected distance is the Jukes-Cantor distance d = − 3

4
log(1− 4

3
du).

For protein sequences, FastTree estimates distances by using the BLOSUM45

amino acid similarity matrix (Henikoff and Henikoff, 1992) and a log-correction

inspired by that of scoredist (Sonnhammer and Hollich, 2005). We scaled the

BLOSUM45 similarity matrix into a dissimilarity matrix such that the aver-

age dissimilarity between each amino acid and a random amino acid is 1 if we

use the non-uniform amino acid frequencies of biological sequences. The un-

corrected distance du between two sequences is the average dissimilarity among

non-gap positions, and the corrected distance is d = −1.3 · log(1 − du). The
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intuitive justification is that the term within the logarithm ranges from 1 for

identical sequences to an expected value of 0 for unrelated sequences, as with

Jukes-Cantor distances for nucleotide sequences. For both nucleotide and pro-

tein sequences, FastTree truncates the corrected distances to a maximum of 3.0

substitutions per site, and for sequences that do not overlap because of gaps,

FastTree uses this maximum distance.

Distances Between Profiles

FastTree uses profiles to estimate the average distance between the children of

two nodes. The profile distance at each position is the average dissimilarity of

the characters. The uncorrected distance between two profiles is then the aver-

age of these position-wise distances, weighted by the product of the proportion

of non-gaps in each of the two profiles. FastTree computes the distance between

two profiles in O(La) time by using the eigen decomposition of the dissimilarity

matrix.

The profile distance is identical to the average distance if the distances are

not corrected for multiple substitutions and if the sequences do not contain

gaps. For example, if we join two sequences A and B together, then the profile

distance

∆(AB,C) =
du(A,C) + du(B,C)

2
.

Of course, we do wish to correct for multiple substitutions, and in practice,

large alignments always contain gaps. In these cases, the profile-based av-

erage becomes an approximation of the average distances used in traditional

minimum-evolution methods.

First, consider the issue of correcting distances for multiple substitutions

with a formula of the form d ∝ − log(1 − du). The average corrected distance

between A and BC is (d(A,B) + d(A,C))/2, or the average of two logarithms.
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However, FastTree cannot compute this average of logarithms from the profiles.

Instead, FastTree uses the logarithm of averages. This is a close approximation

if the distances are short or if the distances are similar. If the distances are

large, then distances between profiles may be more accurate than averages of

distances (Müller et al., 2004).

Second, consider what happens if the sequences contain gaps. FastTree

records the fraction of gaps at each profile position, and when computing dis-

tances, FastTree weights positions by their proportion of non-gaps. Traditional

neighbor-joining implicitly weights the ungapped columns more highly. For ex-

ample, consider an alignment with A=C-, B=GG, and C=CC: ∆(AB,C) = 2/3,

but (du(A,B)+du(A,C))/2 = 1/2. Both approaches treat gaps as missing data,

and it is not obvious which is preferable.

Distances Between Internal Nodes

Neighbor joining operates on distances between internal nodes rather than on

average distances between the members of subtrees. For example, after joining

nodes A and B, neighbor joining sets

du(AB,C) =
du(A,C) + du(B,C) − du(A,B)

2
.

FastTree instead sets the profile of AB to ~P (AB) = (~P (A) + ~P (B))/2, and

computes the distance between nodes with

du(i, j) = ∆(i, j) − u(i) − u(j),

where ∆(i, j) is the profile distance and u(i) is the “up-distance,” or the average

distance of the node from its children. u(i) = 0 for leaves, and for balanced joins,

u(ij) = ∆(i, j)/2. This profile-based computation gives the exact same value of
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du(i, j) as neighbor joining after any number of joins, as long as distances are

not corrected for multiple substitutions and the sequences contain no gaps.

FastTree actually uses weighted joins, as in BIONJ (Gascuel, 1997), rather

than the balanced joins. In BIONJ, the weight of each join depends on the

variance of the distance between two joined nodes, which can also be computed

from the profiles. Also, with weighted joins, the formula for the up-distances

becomes more complicated.

Calculating the Neighbor-Joining Criterion

Given the distances between nodes, neighbor joining selects the join that mini-

mizes the criterion du(i, j)− r(i)− r(j), where i, j, k are indices of active nodes

that have not yet been joined, du(i, j) is the distance between nodes i and j, n

is the number of active nodes and

r(i) ≡
∑

k 6=i

du(i, k)/(n − 2).

r(i) can be thought of as the average “out-distance” of i to other active nodes

(although the denominator is n − 2, not n − 1). Traditional neighbor joining

computes all N out-distances before doing any joins, which takes O(N2) time,

and updates each out-distance after each join, which also takes O(N2) time

overall. To avoid this work, FastTree computes each out-distance as needed in

O(La) time by using a “total profile” T which is the average of all active nodes’

profiles, as implied by

∑

k 6=i

∆(i, k) = n · ∆(i, T ) − ∆(i, i).

(∆(i, i) is the average distance between children of i, including self-comparisons.)

If there are gaps, then this is an approximation. FastTree computes the total
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profile at the beginning of neighbor joining in O(NLa) time, updates it incre-

mentally in O(La) time, and recomputes it every 200 joins to avoid round-off

error.

Notice that FastTree does not log-correct the distances during neighbor join-

ing. We considered doing so, but it reduced FastTree’s accuracy. Perhaps the

profile-based out-distances become inaccurate: the out-distance is an average of

both far and small values, and so the log-correction of the average distance is a

poor estimate of the average of the log-corrected distances.

Selecting the Best Join

FastTree uses heuristics to reduce the number of joins considered at each step

to less than O(n). We first explain the “top hits” heuristic. For each node,

FastTree records a top-hits list: the nodes that are the closest m neighbors of

that node, according to the neighbor-joining criterion. By default, m =
√

N .

Before doing any joins, FastTree estimates these lists for all N sequences by

assuming that if A and B have similar sequences, then the top-hits lists of A

and B will largely overlap. More precisely, FastTree computes the 2m top hits

of A, where the factor of two is a safety factor. Then, for each node B within the

top m hits of A that does not already have a top-hits list, FastTree estimates

the top-hits of B by comparing B to the top 2m hits of A. In theory, this takes

a total of O(N2L/m + NmL) = O(N
√

NL) time to compute and O(Nm) =

O(N
√

N) space to store.

FastTree restricts the top hits heuristic to ensure that a sequence’s top hits

are only inferred from the top hits of “close enough” neighbor. Because of

these restrictions, it is not clear how many sequences will have O(m) close

neighbors, and it is not clear if the initial computation of top-hits lists will truly

take O(N
√

NL) time. However, for large alignments, it takes less time than

computing the distance matrix, so in practice it takes less than O(N2L) time.
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FastTree maintains these top hits lists during neighbor joining. First, after

a join, FastTree computes the top-hits list for the new node in O(mLa) time

by comparing the node to all entries in the top hits lists of its children. Sec-

ond, after a join, some of the other nodes’ top hits may point to an inactive

(joined) node. When FastTree encounters these entries, it replaces them with

the active ancestor. Finally, as the algorithm progresses, the top-hits lists will

gradually become shorter, as joined nodes become absent from lists. Thus, Fast-

Tree periodically “refreshes” the top hit list by comparing the new node to all

other nodes, and also by comparing each of the new node’s top hits to each

other. Each refresh takes O(nLa + m2La) time and ensures that the top-hits

lists of O(m) other nodes are of full length and up-to-date, so FastTree performs

O(
√

N) refreshes, and they take a total of O(N
√

NLa) time.

Besides storing the list of top hits for each node, FastTree also remembers

the best known join for each node, as in FastNJ (Elias and Lagergren, 2005).

FastTree updates the best known join whenever it considers a join that involves

that node. For example, while computing the top hits of A, it may discover that

A,B is a better join than B,best(B).

Based on the best joins and the top-hits lists, FastTree can quickly select

a join. First, FastTree finds the best m joins among the best known joins of

the n active nodes, without recomputing the neighbor-joining criterion to reflect

the current out-distances. In principle, this can be implemented in O(m log N)

time per join by using a priority queue. (FastTree simply sorts the entries,

which adds O(N log N) time per join or O(N2 log N) time overall.) For those

m candidates, FastTree recomputes the neighbor-joining criterion, which takes

O(mLa) time, and selects the best. Furthermore, FastTree does a local hill-

climbing search to find a better join, as in relaxed neighbor-joining (Evans

et al., 2006): given a join AB, it considers all joins AC or BD, where C is in top-
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hits(A) or D is in top-hits(B). This can be beneficial because the out-distances

change after every join, so the best join for a node can change as well. In

theory, this takes O(log n) iterations (Evans et al., 2006), O(m log(n)La) time

per join, or O(N
√

N log(N)La) time overall. Thus, it takes FastTree a total of

O(N
√

N log(N)La) time to maintain the top-hits lists and to select all of the

joins.

Nearest-neighbor Interchanges

After FastTree constructs an initial tree with neighbor joining, it uses nearest-

neighbor interchanges to improve the tree topology. During each round, Fast-

Tree tests and possibly rearranges each split in the tree, and it recomputes the

profile of each internal node. The profiles can change even if the topology does

not change because FastTree recomputes the weighting of the joins.

By default, FastTree does log2(N) + 1 rounds of NNIs. We chose a fixed

number of rounds, instead of iterating until no more NNIs occur, to ensure fast

completion. We chose roughly log2(N) rounds so that, on a balanced topology,

a misplaced node could migrate all of the way across the tree.

The minimum evolution criterion prefers ((A,B), (C,D)) over alternate topolo-

gies ((A,C), (B,D)) or ((A,D), (B,C)) if d(A,B) + d(C,D) < d(A,C) + d(B,D)

and d(A,B) + d(C,D) < d(A,D) + d(B,C). Here, FastTree uses log-corrected

profile distances, rather than distances between nodes. The profile distances

do not account for the distances within the nodes, but this does not affect the

minimum evolution criterion, as it increases all distances d(A, ·) by the same

amount.

For larger topologies, FastTree must compute profiles for additional subtrees

before doing this computation. For example, consider the topology ((A,(B,C)),

D, E). After neighbor-joining, FastTree has profiles for the internal nodes BC

and ABC as well as for the leaves, but to test the split BC versus ADE requires
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the profile for DE. FastTree computes the profile for DE by doing a weighted

join of D and E, using the weighting of BIONJ for a 4-leaf tree (Gascuel, 1997).

FastTree stores these additional profiles along the path to the root and reuses

them when possible. (FastTree computes an unrooted tree but stores it as a

rooted tree.) To ensure that a round of NNIs takes O(NLa) time and at most

O(NLa) additional space, FastTree visits nodes in post-order (it visits children

before their parents).

Local Bootstrap

To estimate the support for each split, FastTree resamples the alignment’s

columns with Knuth’s 2002 random number generator (http://www-cs-faculty.stanford.edu/

˜knuth/programs/rng.c). FastTree counts the fraction of resamples that sup-

port a split over the two potential NNIs around that node, much as it does

while using NNIs to improve the topology. If a resample’s minimum-evolution

criterion gives a tie then that resample is counted as not supporting the split.

Branch Lengths

Once the topology is complete, FastTree computes branch lengths, with

d(AB,CD) =
d(A,C) + d(A,D) + d(B,C) + d(B,D)

4
−

d(A,B) + d(C,D)

2

for internal branches and

d(A,BC) =
d(A,B) + d(A,C) − d(B,C)

2

for the branch leading to leaf A, where d are log-corrected profile distances.
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Unique Sequences

Large alignments often contain many sequences that are exactly identical to

each other (Howe et al., 2002). Before inferring a tree, FastTree uses hashing to

quickly identify redundant sequences. It constructs a tree for the unique subset

of sequences, and then creates multifurcating nodes, without support values, as

parents of the redundant sequences.

Testing FastTree

Sources of Alignments

We obtained sequences of members of COG gene families (Tatusov et al., 2001)

and members of Pfam PF00005 (Finn et al., 2006) from the fall 2007 release

of the MicrobesOnline database (http://www.microbesonline.org/). We aligned

the sequences to the family’s profile, using reverse position-specific blast for the

COG alignment (Schaffer et al., 2001) and hmmalign for the PF00005 align-

ment (http://hmmer.janelia.org/). As the profiles only include positions that

are present in many members of the family, these alignments do not contain all

positions from the original sequences. The 16S rRNA alignment is from green-

genes and is trimmed with the greengenes mask (DeSantis et al. (2006); http://

greengenes.lbl.gov).

To simulate alignments with realistic phylogenies and realistic gaps, we used

the COG alignments. In each simulation, we selected the desired number of

sequences from a COG alignment, we removed positions that were over 25%

gaps, we estimated a topology and branch lengths with PhyML (Guindon and

Gascuel, 2003), we estimated evolutionary rates across sites with phylip’s proml

(http://evolution.genetics.washington.edu/phylip.htm), we simulated sequences

with Rose (Stoye et al., 1998), and we re-introduced the gaps from the origi-

nal alignment. For simulations of 5,000 sequences, we used FastTree instead
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of PhyML and we assigned evolutionary rates at random. For N = 10, we

simulated 3,100 alignments (10 independent runs per family); for N = 50, we

simulated 3,099 alignments; for N = 250, we simulated 308 alignments; for

N = 1, 250, we simulated only 92 alignments because some PhyML jobs did

not complete, and for N = 5, 000, we simulated 7 alignments, as only 7 fami-

lies contained enough non-redundant sequences. See Supplementary Note 2 for

technical details.

CPU Timings

All programs used a single thread of execution. We used a computer with 2

dual-core 2.6 GHz AMD Opteron processors and 32 GB of RAM. However, for

the two long-running maximum-likelihood jobs in Table 6, we used a computer

with a 2.4 GHz Intel Q6600 quad-core processor and 8 GB of RAM. The two

machines have similar performance (about 20% different for FastTree).

To estimate performance on large alignments, we extrapolated from the

largest feasible alignment for that method and its theoretical complexity. Infer-

ring a tree from a distance matrix requires O(N2) space and either O(N2) time

(FastME and RapidNJ (Simonsen et al., 2008)), O(N2 log N) time (Clearcut),

or O(N3) time (QuickTree and BIONJ). Computing bootstrap values from re-

sampled trees with phylip’s consense or with QuickTree’s built-in bootstrap

requires O(N2) space and O(N3) time. For QuickTree, which identifies and

removes duplicate sequences, we used the number of unique sequences rather

than the total number.
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Results

Topological Accuracy in Simulations

We tested FastTree and other methods for inferring phylogenies on simulated

protein alignments with realistic topologies, realistic gaps, varying evolution-

ary rates across sites, and between 10 and 5,000 sequences. The simulated

alignments ranged from 64-1,009 positions (median 304), with 9% gaps, and

on average, pairs of sequences within these alignments were 33% identical. For

each alignment and for each method, we counted the proportion of splits that

were correctly inferred.

As shown in Table 1, FastTree was significantly more accurate other minimum-

evolution methods but was 1-2% less accurate than PhyML, a maximum-likelihood

method (Guindon and Gascuel, 2003). We will show that FastTree scales to

far larger alignments than current maximum-likelihood methods can handle.

Furthermore, most of the splits that disagree between minimum-evolution and

maximum-likelihood trees are poorly supported (Nei et al., 1998). This is true

in our simulations as well, even for the splits that PhyML inferred correctly but

FastTree missed (data not shown). Thus, the practical effect of these differences

may be much less than 1-2%.

After FastTree, the next best method was FastME, which like FastTree uses

nearest-neighbor interchanges according to the minimum evolution criterion

(Desper and Gascuel, 2002). Depending on the number of sequences, FastTree

was slightly but significantly more accurate than FastME, or the two methods

were tied. FastTree was up to 4% more accurate than BIONJ, a weighted vari-

ant of neighbor joining (Gascuel, 1997), when run with FastTree’s log-corrected

distances. BIONJ with log-corrected distances was about as accurate as BIONJ

with maximum-likelihood distances from phylip’s protdist, so FastTree’s dis-

tance measure is adequate. Maximum-likelihood distances that were estimated
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using a model with gamma-distributed rates gave poor results. FastTree was

1-5% more accurate than QuickTree, an implementation of traditional neighbor

joining (Howe et al., 2002), and 4-6% more accurate that Clearcut, an imple-

mentation of relaxed neighbor joining (Evans et al., 2006). Clearcut is more

scalable than the other distance-matrix methods but not as scalable as Fast-

Tree (see below).

We obtained similar results with a standard set of simulations of ungapped

nucleotide alignments (Desper and Gascuel, 2002) or with ungapped protein

simulations (Supplementary Tables 1 & 2). Furthermore, FastTree was more

accurate than BIONJ regardless of how strongly the tree deviated from the

molecular clock or how divergent the sequences were (Supplementary Figure 1).

These simulations also confirm that topologies can be inferred even when

there are many more sequences than sites (Bininda-Emonds et al., 2001). The

alignments with 5,000 sequences contained just 197-384 sites, yet FastTree iden-

tified 76.3% of the splits correctly.

Effectiveness of FastTree’s Approximations and Heuristics

The simulations also let us test the internals of FastTree. First, FastTree’s

neighbor-joining phase should give roughly the same results as BIONJ with un-

corrected distances. In practice, the two methods had very similar accuracies,

as did FastTree’s neighbor-joining with exhaustive search (Table 2). Thus, Fast-

Tree’s accuracy was not affected by its approximations to handle gaps or by its

heuristics to reduce the number of joins considered. Heuristic search was also

over 100 times faster: for an alignment of 1,250 proteins with 338 positions, the

neighbor-joining phase of FastTree took 1,551 seconds with exhaustive search

but only 8 seconds with heuristic search.

Second, using uncorrected distances only reduced the accuracy of BIONJ by
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around 3% (Table 2). This is consistent with a previous simulation study of

realistic topologies and protein alignments (Hollich et al., 2005). Because using

uncorrected distances leads to relatively few errors, FastTree can correct these

errors by doing a few rounds of NNIs. Adding more rounds of NNIs did not

increase accuracy (Table 2).

Quality of Trees for Genuine Alignments

To test the quality of FastTree’s results on genuine protein families, we inferred

topologies for alignments of 500 randomly selected sequences from large COGs.

These alignments ranged from 65 to 1,009 positions, and within each alignment,

the average pair of sequences were 27% identical. To quantify the quality of each

topology, we used PhyML to optimize the branch lengths and compute the log-

likelihood. We ran PhyML with the JTT model of amino acid substitution and

four categories of gamma-distributed rates.

In Table 3, we report the average difference in log-likelihood between that

method’s trees and FastTree’s trees. The methods are sorted by the average

difference. All of the distance-matrix methods gave significantly worse average

likelihoods than FastTree (paired t test, all P < 10−20). Furthermore, as in

the simulations, FastTree’s approximations and heuristics did not reduce the

quality of the trees (Supplementary Table 3). Overall, we found that for these

genuine alignments, FastTree’s topologies were of high quality.

We also tested the quality of FastTree trees for sets of 500 non-redundant

sequences from a large 16S ribosomal RNA alignment (DeSantis et al. (2006);

http://greengenes.lbl.gov). To quantify the quality of each topology, we used

PhyML with the HKY85 model, which accounts for the higher rate of transi-

tions over transversions, and four categories of gamma-distributed rates. Fast-

Tree found topologies with higher likelihoods than most of the distance-matrix
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methods (Table 4). FastME did outperform FastTree slightly if given maximum-

likelihood distances that account for the higher rate of transitions than transver-

sions. Distinguishing transitions from transversions might further improve Fast-

Tree’s topologies.

CPU Time and Memory Required to Infer Trees

We tested FastTree and other methods on a protein alignment from the COG

database (COG2814), a domain alignment from PFam (PF00005), and a trimmed

alignment of full-length 16S rRNAs (Tatusov et al. (2001); Finn et al. (2006);

http://greengenes.lbl.gov). These alignments contain roughly 8,000-150,000 dis-

tinct sequences (Table 5). Running the distance-matrix methods on the larger

alignments was not feasible, so we extrapolated from smaller alignments (see

Methods). The actual or estimated CPU time and memory usage are shown in

Table 6.

The maximum-likelihood methods we tested, PhyML 3 (Guindon and Gas-

cuel, 2003) and RAxML VI (Stamatakis, 2006), did not complete in 50 days on

the smallest of these problems, which took FastTree about 3 minutes. (Despite

the high usage of virtual memory by PhyML, both PhyML and RAxML ran

at over 99% CPU utilization.) Even for COG alignments of just 1,250 pro-

teins, PhyML 3 typically took over a week. Thus, current maximum-likelihood

methods do not scale.

Most of the methods require a distance matrix as input, so in practice, the

running time is the time to compute a distance matrix plus the time to infer a

tree. As shown in Table 6, FastTree is over 1,000 times faster than computing

maximum-likelihood protein distances. For the 16S rRNA alignment, FastTree

is as fast as computing Jukes-Cantor distances and over 100 times faster than

computing maximum-likelihood distances with gamma-distributed rates.
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For the 16S alignment, the only method other than FastTree that seems

practical is Clearcut: all of the other methods would require over 1,000 hours or

over 500 gigabytes of memory. Clearcut itself is very fast – we estimate that it

might take only 12 hours to infer a tree from the 16S distance matrix. However,

Clearcut requires a distance matrix, and FastTree is faster than Clearcut once

the cost of computing the distance matrix is included. Clearcut would also

require over 50 gigabytes of memory – 20 times as much as FastTree – which

makes it impractical for us to run. Furthermore, Clearcut seems to be less

accurate than FastTree (Tables 1, 3, & 4).

Effectiveness and Speed of the Local Bootstrap

To test whether FastTree’s local bootstrap can identify which splits are reliable,

we used the protein simulations with 250 sequences, We also computed the tra-

ditional bootstrap: we used phylip’s seqboot to generate resampled alignments,

we ran FastTree on each resample, and we counted how often each split in the

original tree was present in the resampled trees. For both methods, we used

1,000 resamples. As shown in Figure 2, both methods were effective in identi-

fying correct splits. If we define “strongly supported” as a local bootstrap of

≥ 95%, then 65% of the correct splits were strongly supported. Conversely, 97%

of the strongly-supported splits were correct.

To quantify how effective the measures were in distinguishing correct splits,

we used the area under the receiver operating characteristic curve (AOC, De-

Long and Clarke-Pearson (1998)). The AOC is the probability that a true split

will have a higher support value than an incorrect split, so a perfect predictor

has AOC=1 and a random predictor has AOC=1/2. The traditional bootstrap

had an AOC of 0.933, versus 0.875 for the local bootstrap. Overall, the local

bootstrap is not quite as sensitive as the traditional bootstrap, but it is a strong
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indicator of which splits are correct.

The local bootstrap was far faster than the traditional bootstrap and re-

quired far less memory. The traditional bootstrap takes 100 times longer than

tree inference plus the time to compare the trees to each other. For the 16S

rRNA alignment, performing the tree comparisons with phylip’s consense would

take months and would require over 90 GB of memory (Table 6). In contrast,

FastTree computed the local bootstrap in an hour and 2.4 GB.

Discussion

Large Alignments

We have relied on profile-based multiple sequence alignment as the most practi-

cal method for large families. However, profile-based alignment is believed to be

less accurate than progressive alignment. Thus, whenever possible, biological in-

ferences from these large trees should be confirmed with smaller, higher-quality

alignments. This also allows the use of slower but more accurate tree-building

methods and tests. For example, MicrobesOnline.org includes interactive tools

for browsing large trees, for selecting relevant sequences, and for building pro-

gressive alignments and maximum-likelihood trees with those sequences.

Scaling to a Million Sequences

FastTree computes trees for the largest existing alignments, with on the order

of 100,000 sequences, in under a day. However, given the rapid rate of DNA

sequencing, we expect that alignments with 1,000,000 sequences will soon exist.

For such large alignments, the major memory requirement will be the top-hits

lists, which take O(N
√

N) space. For 1 million sequences, this will be about

20 gigabytes. In contrast, the distance matrix for a million sequences would
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take 2 terabytes of memory. FastTree’s running time should scale by between

O(N log N
√

N) and O(N2), so inferring a tree for a million rRNA sequences

should take 2-4 weeks. Tuning the top-hits heuristic might reduce this time.

Conclusions

FastTree makes it practical to infer accurate phylogenies, including support

values, for families with tens or hundreds of thousands of sequences. These

phylogenies should be useful for reconstructing the tree of life and for predict-

ing functions for the millions of uncharacterized proteins that are being iden-

tified by large-scale DNA sequencing. FastTree executables and source code

are available at http://www.microbesonline.org/fasttree; FastTree trees for ev-

ery prokaryotic gene family are available in the MicrobesOnline tree-browser

(http://www.microbesonline.org/); and a FastTree tree for all sequenced full-

length 16S ribosomal RNAs is available from the FastTree web site and will be

included in the next release of greengenes (http://greengenes.lbl.gov).
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Figures

Figure 1 - Overview of FastTree.
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Figure 2 - Distribution of support values for simulated

alignments of 250 protein sequences with gaps.

We compare the distribution of FastTree’s local bootstrap and the traditional
(global) bootstrap for correctly- and incorrectly-inferred splits. The right-most
bin contains the strongly-supported splits (0.95-1.0).
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Tables

Table 1 - Topological accuracy of tree-building methods on

simulated protein alignments with gaps.

Topological Accuracy
Method Distances N=10 N=50 N=250 N=1,250 N=5,000

PhyML JTT 0.744+ 0.771+ 0.817+ 0.801+ –
FastTree log-corrected 0.7240 0.7630 0.7970 0.7780 0.7630

FastME log-corrected 0.716− 0.754− 0.7960 0.7770 0.753−

BIONJ log-corrected 0.7250 0.754− 0.766− 0.730− 0.723−

BIONJ JTT 0.701− 0.758− 0.777− 0.737− 0.731−

BIONJ JTT+Γ 0.567− 0.625− 0.737− 0.697− –
QuickTree log-corrected 0.716− 0.746− 0.760− 0.726− 0.716−

QuickTree %different 0.673− 0.678− 0.699− 0.672− 0.655−

Clearcut log-corrected 0.682− 0.733− 0.755− 0.723− 0.715−

+ Significantly more accurate than FastTree (P < 0.01, paired t test)
0 Not significantly different from FastTree (P > 0.01, paired t test)
− Significantly less accurate than FastTree (P < 0.01, paired t test)
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Table 2 - The topological accuracy of variants of FastTree

on simulated protein alignments with gaps.

Topological Accuracy
Method N=250 N=1,250 N=5,000

FastTree, Default settings 0.797 0.778 0.763
FastTree + Extra NNI (20 rounds) 0.797 0.778 0.763
FastTree’s Neighbor-joining (No NNI) 0.734 0.702 0.698
FastTree, Exhaustive search, No NNI 0.733 0.701 –
BIONJ, uncorrected distances 0.731 0.699 0.694
BIONJ, log-corrected distances 0.766 0.730 0.723

32



Table 3 - The relative log-likelihoods of topologies inferred

for 310 genuine protein alignments of 500 sequences each.

Distances/ Average Lower Lik.
Method Model Log-Lik. than FastTree

PhyML/FastTreea JTT+Γ4
b 440.7 0%

FastTree log-corrected 0.0 –
FastME log-corrected -165.2 86%
BIONJ JTT -404.3 95%
BIONJ log-corrected -426.1 >99%
QuickTree log-corrected -495.3 >99%
Clearcut log-corrected -532.2 99%
QuickTree %different -667.0 100%
BIONJ JTT+Γ -1576.1 99%

a PhyML 3 with FastTree as the starting tree.
b Γ4 means four categories of sites with gamma-distributed rates.

33



Table 4 - The relative log-likelihoods of topologies inferred

for 100 genuine 16S ribosomal RNA alignments of 500 se-

quences each.

Distances/ Average Lower Lik.
Method Model Log-Lik. than FastTree

PhyML HKY85+Γ4 510.4 0%
PhyML HKY85 358.4 5%
FastME F84+Γ 59.9 34%
FastTree Jukes-Cantor 0.0 –
FastME Kimura -7.4 53%
FastME Jukes-Cantor -71.7 70%
BIONJ F84+Γ -749.1 100%
BIONJ Kimura -781.0 100%
BIONJ Jukes-Cantor -843.9 100%
QuickTree F84+Γ -878.8 100%
Clearcut F84+Γ -905.1 100%
QuickTree Jukes-Cantor -941.1 100%
Clearcut Jukes-Cantor -982.3 100%
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Table 5 - Genuine alignments for performance testing.

Alignment COG2814 PF00005 16S rRNA

Type protein protein nucleotide
#Sequences 10,610 52,927 167,547
#Distinct 8,362 39,092 158,022
#Columns 394 214 1,287
%Gaps 10.8% 15.2% 4.3%
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Table 6 - CPU time and memory usage for computing dis-

tances, trees, and support values.

COG2814 PF00005 16S rRNA
Program Support hours GB hours GB hours GB

FastTree 1.0 none 0.06 0.16 0.52 0.3 16.3 2.4
FastTree 1.0 local 1,000 0.08 0.16 0.56 0.3 17.3 2.4
Log-corrected Distancesa 0.05 0.13 0.71 2.8 33.1 49.9

Max-lik. Distancesb 138 0.72 ≈ 3, 000 – ≈ 5, 000 –
Clearcut 1.0.8 c none 0.06 0.22 1.44 5.2 ≈ 28.6 ≈ 52
RapidNJ 1.0.0 c none 0.05 2.2 ≈ 0.9 ≈ 55 ≈ 22.1 ≈ 549
FastME 1.1 c none 0.51 4.2 ≈ 12.5 ≈ 105 ≈ 138 ≈ 1, 000
QuickTree 1.1 c none 0.24 0.16 22.7 2.9 ≈ 1, 500 ≈ 47

QuickTree 1.1 d boot 100 63.5 0.71 ≈ 104
≈ 15.5 ≈ 105

≈ 254
BIONJc none 32.9 0.44 ≈ 820 ≈ 10.9 ≈ 105

≈ 110
PhyML 3e aLRT >1,000 9.5 – – – –

RAxML VI 1.0f none >1,000 0.70 – – – –
consenseg boot 100 1.09 0.36 118 9.4 ≈ 3, 700 ≈ 94

a The time to compute the distances between all N2 pairs of sequences in the
alignment, as implemented by the authors, and the space required to store the
N(N − 1)/2 distinct entries of the distance matrix. For nucleotide sequences,
these are the same as Jukes-Cantor distances.
b For protein sequences, we used phylip’s protdist and default options (JTT
model, no variation of rates across sites). For nucleotide sequences, we used
phylip’s dnadist with the F84 model and gamma-distributed rates.
c These timings include half of the time to compute N2 log-corrected distances
because the method requires a distance matrix but each pair of sequences only
needs to be considered once.
d Using QuickTree’s built-in implementation of %different distances and of
global bootstrap.
e For best performance, we used no variation of rates across sites.
f For best performance, we used no variation of rates across sites and the fast
hill-climbing option (-f d). For an initial topology, we used the BIONJ tree.
g This does not include the time to compute the resampled trees.
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