期刊文章

论环境会计

摘要:本文在分析环境会计必要性的基础上,论述了环境会计的目的、会计内容、计量方法、纪要和信息公布。分析了我国环境会计的理论研究现状及实施情况。betway亚洲对加快国家环境核算的实施提出了一些建议。

...阅读更多


引用
多个过滤器
1995年1月1日

327引用

期刊文章 DOI
01小君2003 - Aiche杂志
文摘:“可持续性”一词有了新的战略意义。可持续性不再局限于经济领域,现在包括了与社会和环境责任相关的广泛的公司特征。这种思维的转变(我们敢说这是一种启蒙吗?)是因为企业高管们越来越认识到,仅靠盈利能力不足以衡量成功,许多与可持续性相关的非财务问题是长期股东价值的根本驱动力。相反,如果不能认识到这些战略问题,就会威胁到企业的生存。例如,对抑制工业二氧化碳和其他全球变暖气体排放能力的日益担忧,只是这个众所周知的冰山一角。“可持续发展”(SD)最初的概念是在15年前由一个联合国委员会定义的,建议以一种尊重人类需求和全球生态系统的方式追求发展,确保子孙后代的生活质量(WCED, 1987)。很明显,即使在那时,目前的人口增长和经济发展趋势是不可持续的。如果人类活动模式不发生巨大变化,全球产业的持续增长将面临严峻挑战。这些挑战的例子包括(世界银行,2001年):不利的环境影响,如气候变化;空气、水和土地的退化; depletion of natural resources, including fresh water and minerals; loss of agricultural land due to deforestation, soil erosion and urbanization; and threatened ecosystems. • Adverse socio-economic impacts such as widespread poverty, lack of potable water, proliferation of infectious diseases, social disintegration resulting from displacement of traditional lifestyles, growing income gaps, and lack of primary education. Rather than ignoring these ominous signals, a number of visionary business leaders have risen to the challenge and developed a new model of industrial progress that marries economic growth with social and environmental responsibility (Holliday et al, 2002). Many corporations are beginning to partner with governments and nongovernmental organizations to seek sustainable solutions that preserve their freedom to operate. Pragmatically speaking, such voluntary initiatives are certainly preferable to resistance or indifference, which would invite an increasingly onerous regulatory regime that limits industrial growth through economic or technological constraints. Responding to the challenges of sustainability requires insight into the characteristics of a sustainable system, and a fundamental rethinking of how all industrial products and processes are designed, built, operated, and evaluated. Qualitative definitions of sustainability such as that given by the U.N. are not particularly helpful for engineering decision-making. The following definition is more useful: A sustainable product or process is one that constrains resource consumption and waste generation to an acceptable level, makes a positive contribution to the satisfaction of human needs, and provides enduring economic value to the business enterprise. The determination of an “acceptable level” represents a technical challenge, but it is common to assert that resource utilization should not deplete existing capital, that is, resources should not be used at a rate faster than the rate of replenishment, and that waste generation should not exceed the carrying capacity of the surrounding ecosystem (Robèrt, 1997). Since sustainability is a property of the entire system, and not of an individual subsystem, incorporating sustainability into engineering requires the boundaries of “the process” to be greatly expanded—beyond the plant and even beyond the corporation. As shown in Figure 1, the analysis boundaries might extend to the economy and the ecosystem. Moreover, the scope of analysis needs to be expanded beyond cost and performance issues to include environmental integrity and socio-economic well being. Life cycle assessment (LCA), now an ISO-standardized methodology, is an important example of the effort to expand the traditional process boundary. LCA considers both the upstream and downstream processes associated with a given product in terms of energy use, material use, waste generation, and business value creation (Consoli et al., 1993). The life cycle stages, shown in Figure 1, may include resource extraction, procurement, transportation, manufacturing, product use, service, and end-of-life disposition or recovery. The feedback loop indicates the importance of recycling, reuse, and reverse logistics. Careful consideration of life cycle implications can sometimes yield surprising results. For example, efforts to develop “green” plastics, such as polylactides, seem appealing because the feedstocks are renewable and the plastics are The Quest for Sustainability: Challenges for Process Systems Engineering

226引用


引用《环境会计论》中的背景或方法

  • ...系统生态学家(Odum, 1996)对许多生态产品和过程的效率进行了研究和汇编。...

    […]

  • ...将生态系统视为能量流网络已被证明是对其进行分析、建模和评估的有力方法(Odum, 1996;Ulanowicz, 1997;约根森,1997)。...

    […]

  • ...与阳光相比,煤炭较低的生态效率可能表明其高能量强度和稀缺性(Odum, 1996)。...

    […]

  • ...系统生态学家通常将生态系统描述为能量流网络,太阳能、潮汐和地热是驱动所有生态过程的主要独立能源(Odum, 1996;约根森,1997)。...

    […]

期刊文章 DOI
文摘:我们开发并应用了一种估值方法来计算可持续发展资本的成本,并最终计算公司的可持续价值创造。可持续发展假设决策必须考虑到所有形式的资本,而不仅仅是经济资本。我们开发了一种方法,允许计算与使用不同形式的资本相关的成本。我们的方法借鉴了金融经济学的观点,即资本回报率必须覆盖资本成本。资本成本是由机会成本决定的,也就是说,替代投资本可以创造的放弃回报。我们将机会成本的逻辑不仅应用于经济资本的估值,而且应用于其他形式资本的估值。这允许(a)基于不同形式资本的价值聚合对不同形式资本的使用进行综合分析,(b)确定公司使用的一组不同形式资本的机会成本,称为可持续性资本成本,(c)计算公司的可持续性效率,以及(d)计算可持续价值创造,即高于可持续性资本成本的价值。通过将金融市场中经济资本估值的既定逻辑扩展到其他形式的资本,我们提供了一种方法,可以确定可持续发展资本的最有效配置,以实现公司的可持续价值创造。我们通过对英国石油公司(BP)可持续性绩效的评估,证明了该方法的实用性。

204引用


引用《环境会计论》的背景

  • ...其他的例子是,例如,能量(例如,Odum 1996年)或面向空间(例如,Wackernagel和Rees 1996年)方法。...

    […]

  • ...在自然资本领域,这种聚集问题已通过环境影响评价方法处理(例如,Fava等人,1991年;Heijungs等,1992a;1992 b;•奥德姆1996;48工业生态学杂志Wackernagel and Rees 1996)。...

    […]

期刊文章 DOI
文摘:推荐人:Charles A. S. Hall博士,环境研究系,纽约州立大学,环境科学与林业学院,锡拉丘兹,NY 13210生物燃料生产系统有时被声称能够填补未来化石燃料的短缺,以及减少二氧化碳排放和全球变暖。因此,它们经常被宣传为化石燃料的“绿色”替代品。我提出了一个全面的,基于系统的案例研究,从玉米或玉米(Zea mays L.)生产生物燃料,并在这篇综述中批判性地评价它。该案例研究是我对任何能源作物建议的综合方法的一个例子。我的结论是,大规模的生物燃料选择不是一个可行的替代方案,基于经济,能源和能值(一种形式的可用能量[火用],直接或间接需要提供给定的流量或储存的火用或物质)案例研究数据的分析和估计可能的影响。

160引用


引用《环境会计论》中的背景或方法

  • ...能值会计方法(Odum, 1996;Brown和Ulgiati, 1999)提供了一种科学的方法来衡量一个过程的可行性和可持续性所需要的全球环境支持。...

    […]

  • ...我们使用能值会计方法(Odum, 1996)来评估生物燃料选择的环境支持,并将其与其他选择进行比较。...

    […]

  • ...对于各种各样的资源和商品,以及驱动地球生物-地球化学过程的可再生能源,已经做到了这一点(Odum, 1996)。...

    […]

期刊文章 DOI
10月15日2004 - 生态模型
文摘:能量分析(EA)和能值分析(EMA)之间的对话被嵌入到更大的指标搜索中,以指导我们的生活和行为朝着有利于环境的方向发展。两者都有政策含义和科学基础。EMA是两者中更有野心的一个:它有更广阔的视野,更大胆地宣称与经济学有直接联系,而且它有一个内部优化原则。有了这样的野心,EMA更容易受到批评,更有可能在其假定的政策应用中失败,但EA很难幸免。对两者的批评都来自外界,尤其是那些专注于应用的经济学家。双方的批评也来自对方,通常集中在会计和簿记的细节上:如何计算和使用量化结果。本文将集中讨论后几个问题。Mark Brown (EMA开发人员和用户)和我(EA开发人员和用户)在1996年发表了一个详细的比较。这是在我和H.T. Odum (EMA的创始人)进行了一些部分对话之后。1996年,欧达姆出版了《环境会计》一书,其中明确列出了环境影响评估的会计准则,布朗在准备我们的联合文章时已经使用了这些准则。 Unfortunately, that book does not present a consistent comparison of EA and EMA applied tothe same system, andBrown and

126引用


参考文献
多个过滤器
1995年1月1日

327引用

期刊文章 DOI
01小君2003 - Aiche杂志
文摘:“可持续性”一词有了新的战略意义。可持续性不再局限于经济领域,现在包括了与社会和环境责任相关的广泛的公司特征。这种思维的转变(我们敢说这是一种启蒙吗?)是因为企业高管们越来越认识到,仅靠盈利能力不足以衡量成功,许多与可持续性相关的非财务问题是长期股东价值的根本驱动力。相反,如果不能认识到这些战略问题,就会威胁到企业的生存。例如,对抑制工业二氧化碳和其他全球变暖气体排放能力的日益担忧,只是这个众所周知的冰山一角。“可持续发展”(SD)最初的概念是在15年前由一个联合国委员会定义的,建议以一种尊重人类需求和全球生态系统的方式追求发展,确保子孙后代的生活质量(WCED, 1987)。很明显,即使在那时,目前的人口增长和经济发展趋势是不可持续的。如果人类活动模式不发生巨大变化,全球产业的持续增长将面临严峻挑战。这些挑战的例子包括(世界银行,2001年):不利的环境影响,如气候变化;空气、水和土地的退化; depletion of natural resources, including fresh water and minerals; loss of agricultural land due to deforestation, soil erosion and urbanization; and threatened ecosystems. • Adverse socio-economic impacts such as widespread poverty, lack of potable water, proliferation of infectious diseases, social disintegration resulting from displacement of traditional lifestyles, growing income gaps, and lack of primary education. Rather than ignoring these ominous signals, a number of visionary business leaders have risen to the challenge and developed a new model of industrial progress that marries economic growth with social and environmental responsibility (Holliday et al, 2002). Many corporations are beginning to partner with governments and nongovernmental organizations to seek sustainable solutions that preserve their freedom to operate. Pragmatically speaking, such voluntary initiatives are certainly preferable to resistance or indifference, which would invite an increasingly onerous regulatory regime that limits industrial growth through economic or technological constraints. Responding to the challenges of sustainability requires insight into the characteristics of a sustainable system, and a fundamental rethinking of how all industrial products and processes are designed, built, operated, and evaluated. Qualitative definitions of sustainability such as that given by the U.N. are not particularly helpful for engineering decision-making. The following definition is more useful: A sustainable product or process is one that constrains resource consumption and waste generation to an acceptable level, makes a positive contribution to the satisfaction of human needs, and provides enduring economic value to the business enterprise. The determination of an “acceptable level” represents a technical challenge, but it is common to assert that resource utilization should not deplete existing capital, that is, resources should not be used at a rate faster than the rate of replenishment, and that waste generation should not exceed the carrying capacity of the surrounding ecosystem (Robèrt, 1997). Since sustainability is a property of the entire system, and not of an individual subsystem, incorporating sustainability into engineering requires the boundaries of “the process” to be greatly expanded—beyond the plant and even beyond the corporation. As shown in Figure 1, the analysis boundaries might extend to the economy and the ecosystem. Moreover, the scope of analysis needs to be expanded beyond cost and performance issues to include environmental integrity and socio-economic well being. Life cycle assessment (LCA), now an ISO-standardized methodology, is an important example of the effort to expand the traditional process boundary. LCA considers both the upstream and downstream processes associated with a given product in terms of energy use, material use, waste generation, and business value creation (Consoli et al., 1993). The life cycle stages, shown in Figure 1, may include resource extraction, procurement, transportation, manufacturing, product use, service, and end-of-life disposition or recovery. The feedback loop indicates the importance of recycling, reuse, and reverse logistics. Careful consideration of life cycle implications can sometimes yield surprising results. For example, efforts to develop “green” plastics, such as polylactides, seem appealing because the feedstocks are renewable and the plastics are The Quest for Sustainability: Challenges for Process Systems Engineering

226引用

期刊文章 DOI
文摘:我们开发并应用了一种估值方法来计算可持续发展资本的成本,并最终计算公司的可持续价值创造。可持续发展假设决策必须考虑到所有形式的资本,而不仅仅是经济资本。我们开发了一种方法,允许计算与使用不同形式的资本相关的成本。我们的方法借鉴了金融经济学的观点,即资本回报率必须覆盖资本成本。资本成本是由机会成本决定的,也就是说,替代投资本可以创造的放弃回报。我们将机会成本的逻辑不仅应用于经济资本的估值,而且应用于其他形式资本的估值。这允许(a)基于不同形式资本的价值聚合对不同形式资本的使用进行综合分析,(b)确定公司使用的一组不同形式资本的机会成本,称为可持续性资本成本,(c)计算公司的可持续性效率,以及(d)计算可持续价值创造,即高于可持续性资本成本的价值。通过将金融市场中经济资本估值的既定逻辑扩展到其他形式的资本,我们提供了一种方法,可以确定可持续发展资本的最有效配置,以实现公司的可持续价值创造。我们通过对英国石油公司(BP)可持续性绩效的评估,证明了该方法的实用性。

204引用

期刊文章 DOI
文摘:推荐人:Charles A. S. Hall博士,环境研究系,纽约州立大学,环境科学与林业学院,锡拉丘兹,NY 13210生物燃料生产系统有时被声称能够填补未来化石燃料的短缺,以及减少二氧化碳排放和全球变暖。因此,它们经常被宣传为化石燃料的“绿色”替代品。我提出了一个全面的,基于系统的案例研究,从玉米或玉米(Zea mays L.)生产生物燃料,并在这篇综述中批判性地评价它。该案例研究是我对任何能源作物建议的综合方法的一个例子。我的结论是,大规模的生物燃料选择不是一个可行的替代方案,基于经济,能源和能值(一种形式的可用能量[火用],直接或间接需要提供给定的流量或储存的火用或物质)案例研究数据的分析和估计可能的影响。

160引用

期刊文章 DOI
10月15日2004 - 生态模型
文摘:能量分析(EA)和能值分析(EMA)之间的对话被嵌入到更大的指标搜索中,以指导我们的生活和行为朝着有利于环境的方向发展。两者都有政策含义和科学基础。EMA是两者中更有野心的一个:它有更广阔的视野,更大胆地宣称与经济学有直接联系,而且它有一个内部优化原则。有了这样的野心,EMA更容易受到批评,更有可能在其假定的政策应用中失败,但EA很难幸免。对两者的批评都来自外界,尤其是那些专注于应用的经济学家。双方的批评也来自对方,通常集中在会计和簿记的细节上:如何计算和使用量化结果。本文将集中讨论后几个问题。Mark Brown (EMA开发人员和用户)和我(EA开发人员和用户)在1996年发表了一个详细的比较。这是在我和H.T. Odum (EMA的创始人)进行了一些部分对话之后。1996年,欧达姆出版了《环境会计》一书,其中明确列出了环境影响评估的会计准则,布朗在准备我们的联合文章时已经使用了这些准则。 Unfortunately, that book does not present a consistent comparison of EA and EMA applied tothe same system, andBrown and

126引用