Institution
Islamia University
Education
•
Bahawalpur, Pakistan
•
About:Islamia University is a education organization based out in Bahawalpur, Pakistan. It is known for research contribution in the topics: Dielectric & Population. The organization has 2414 authors who have published 4188 publications receiving 48109 citations.
Papers published on a yearly basis
Papers
[...]
Huazhong Agricultural University
1,University of Queensland
2,University of Agriculture, Faisalabad
3,Beijing Normal University
4,COMSATS Institute of Information Technology
5,Northeast Agricultural University
6,Wellington Management Company
7,Islamia University
8,King Abdulaziz University
9,Linyi University
10,Yangtze University
11
TL;DR:A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have been presented here and a side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena.
Abstract:非生物压力的一个主要限制to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought stress are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.
751citations
[...]
TL;DR:High efficiency, high biosorption capacity, cost-effectiveness and renewability are the important parameters making these materials as economical alternatives for metal removal and waste remediation.
Abstract:删除/ remediat传统技术ion of toxic metal ions from wastewaters are proving expensive due to non-regenerable materials used and high costs. Biosorption is emerging as a technique offering the use of economical alternate biological materials for the purpose. Functional groups like carboxyl, hydroxyl, sulphydryl and amido present in these biomaterials, make it possible for them to attach metal ions from waters. Every year, large amounts of straw and bran from Triticum aestivum (wheat), a major food crop of the world, are produced as by-products/waste materials. The purpose of this article is to review rather scattered information on the utilization of straw and bran for the removal/minimization of metal ions from waters. High efficiency, high biosorption capacity, cost-effectiveness and renewability are the important parameters making these materials as economical alternatives for metal removal and waste remediation. Applications of available adsorption and kinetic models as well as influences of change in temperature and pH of medium on metal biosorption by wheat straw and wheat bran are reviewed. The biosorption mechanism has been found to be quite complex. It comprises a number of phenomena including adsorption, surface precipitation, ion-exchange and complexation.
670citations
[...]
TL;DR:The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for enhancing plant growth under stress conditions have been discussed at length in this review.
Abstract:Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for enhancing plant growth under stress conditions have been discussed at length in this review. Growth promotion by single and dual inoculation of PGPR and mycorrhizal fungi under stress conditions have also been discussed and reviewed comprehensively.
556citations
[...]
TL;DR:The study found that neural-network models such as feedforward and feedback propagation artificial neural networks are performing better in its application to human problems and proposed feedforwardand feedback propagation ANN models for research focus based on data analysis factors like accuracy, processing speed, latency, fault tolerance, volume, scalability, convergence, and performance.
Abstract:This is a survey of neural network applications in the real-world scenario. It provides a taxonomy of artificial neural networks (ANNs) and furnish the reader with knowledge of current and emerging trends in ANN applications research and area of focus for researchers. Additionally, the study presents ANN application challenges, contributions, compare performances and critiques methods. The study covers many applications of ANN techniques in various disciplines which include computing, science, engineering, medicine, environmental, agriculture, mining, technology, climate, business, arts, and nanotechnology, etc. The study assesses ANN contributions, compare performances and critiques methods. The study found that neural-network models such as feedforward and feedback propagation artificial neural networks are performing better in its application to human problems. Therefore, we proposed feedforward and feedback propagation ANN models for research focus based on data analysis factors like accuracy, processing speed, latency, fault tolerance, volume, scalability, convergence, and performance. Moreover, we recommend that instead of applying a single method, future research can focus on combining ANN models into one network-wide application.
481citations
[...]
TL;DR:This review will describe only those with potentially useful antimicrobial activity, viz. with MICs in the range 0.02-10 microg mL(-1); a total of 145 compounds from 13 structural classes are discussed, and over 100 references are cited.
Abstract:Over the last decade, it has become clear that antimicrobial drugs are losing their effectiveness due to the evolution of pathogen resistance. There is therefore a continuing need to search for new antibiotics, especially as new drugs only rarely reach the market. Natural products are both fundamental sources of new chemical diversity and integral components of today's pharmaceutical compendium, and the aim of this review is to explore and highlight the diverse natural products that have potential to lead to more effective and less toxic antimicrobial drugs. Although more than 300 natural metabolites with antimicrobial activity have been reported in the period 2000-2008, this review will describe only those with potentially useful antimicrobial activity, viz. with MICs in the range 0.02-10 microg mL(-1). A total of 145 compounds from 13 structural classes are discussed, and over 100 references are cited.
374citations